| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw2en | GIF version | ||
| Description: The power set of a set
being equinumerous to set exponentiation with a
base of ordinal 2o is equivalent to
excluded middle. This is
Metamath 100 proof #52. The forward direction uses excluded middle
expressed as EXMID to show this
equinumerosity.
The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| exmidpw2en | ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 4227 | . . . . 5 ⊢ 𝒫 𝑥 ∈ V | |
| 2 | pp0ex 4237 | . . . . . . 7 ⊢ {∅, {∅}} ∈ V | |
| 3 | vex 2776 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | mapval 6754 | . . . . . 6 ⊢ ({∅, {∅}} ↑𝑚 𝑥) = {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} |
| 5 | mapex 6748 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ {∅, {∅}} ∈ V) → {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} ∈ V) | |
| 6 | 3, 2, 5 | mp2an 426 | . . . . . 6 ⊢ {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} ∈ V |
| 7 | 4, 6 | eqeltri 2279 | . . . . 5 ⊢ ({∅, {∅}} ↑𝑚 𝑥) ∈ V |
| 8 | 3 | a1i 9 | . . . . . 6 ⊢ (EXMID → 𝑥 ∈ V) |
| 9 | 0ex 4175 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (EXMID → ∅ ∈ V) |
| 11 | p0ex 4236 | . . . . . . 7 ⊢ {∅} ∈ V | |
| 12 | 11 | a1i 9 | . . . . . 6 ⊢ (EXMID → {∅} ∈ V) |
| 13 | 0nep0 4213 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
| 14 | 13 | a1i 9 | . . . . . 6 ⊢ (EXMID → ∅ ≠ {∅}) |
| 15 | exmidexmid 4244 | . . . . . . . 8 ⊢ (EXMID → DECID 𝑝 ∈ 𝑞) | |
| 16 | 15 | ralrimivw 2581 | . . . . . . 7 ⊢ (EXMID → ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝 ∈ 𝑞) |
| 17 | 16 | ralrimivw 2581 | . . . . . 6 ⊢ (EXMID → ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝 ∈ 𝑞) |
| 18 | eqid 2206 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))) = (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))) | |
| 19 | 8, 10, 12, 14, 17, 18 | pw2f1odc 6939 | . . . . 5 ⊢ (EXMID → (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))):𝒫 𝑥–1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) |
| 20 | f1oen2g 6853 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ V ∧ ({∅, {∅}} ↑𝑚 𝑥) ∈ V ∧ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))):𝒫 𝑥–1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥)) | |
| 21 | 1, 7, 19, 20 | mp3an12i 1354 | . . . 4 ⊢ (EXMID → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥)) |
| 22 | df2o2 6524 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
| 23 | 22 | oveq1i 5961 | . . . 4 ⊢ (2o ↑𝑚 𝑥) = ({∅, {∅}} ↑𝑚 𝑥) |
| 24 | 21, 23 | breqtrrdi 4089 | . . 3 ⊢ (EXMID → 𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| 25 | 24 | alrimiv 1898 | . 2 ⊢ (EXMID → ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| 26 | 1oex 6517 | . . . . 5 ⊢ 1o ∈ V | |
| 27 | pweq 3620 | . . . . . 6 ⊢ (𝑥 = 1o → 𝒫 𝑥 = 𝒫 1o) | |
| 28 | oveq2 5959 | . . . . . 6 ⊢ (𝑥 = 1o → (2o ↑𝑚 𝑥) = (2o ↑𝑚 1o)) | |
| 29 | 27, 28 | breq12d 4060 | . . . . 5 ⊢ (𝑥 = 1o → (𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) ↔ 𝒫 1o ≈ (2o ↑𝑚 1o))) |
| 30 | 26, 29 | spcv 2868 | . . . 4 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → 𝒫 1o ≈ (2o ↑𝑚 1o)) |
| 31 | df1o2 6522 | . . . . . 6 ⊢ 1o = {∅} | |
| 32 | 31 | oveq2i 5962 | . . . . 5 ⊢ (2o ↑𝑚 1o) = (2o ↑𝑚 {∅}) |
| 33 | 22, 2 | eqeltri 2279 | . . . . . 6 ⊢ 2o ∈ V |
| 34 | 33, 9 | mapsnen 6910 | . . . . 5 ⊢ (2o ↑𝑚 {∅}) ≈ 2o |
| 35 | 32, 34 | eqbrtri 4068 | . . . 4 ⊢ (2o ↑𝑚 1o) ≈ 2o |
| 36 | entr 6883 | . . . 4 ⊢ ((𝒫 1o ≈ (2o ↑𝑚 1o) ∧ (2o ↑𝑚 1o) ≈ 2o) → 𝒫 1o ≈ 2o) | |
| 37 | 30, 35, 36 | sylancl 413 | . . 3 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → 𝒫 1o ≈ 2o) |
| 38 | exmidpw 7012 | . . 3 ⊢ (EXMID ↔ 𝒫 1o ≈ 2o) | |
| 39 | 37, 38 | sylibr 134 | . 2 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → EXMID) |
| 40 | 25, 39 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 836 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 ≠ wne 2377 ∀wral 2485 Vcvv 2773 ∅c0 3461 ifcif 3572 𝒫 cpw 3617 {csn 3634 {cpr 3635 class class class wbr 4047 ↦ cmpt 4109 EXMIDwem 4242 ⟶wf 5272 –1-1-onto→wf1o 5275 (class class class)co 5951 1oc1o 6502 2oc2o 6503 ↑𝑚 cmap 6742 ≈ cen 6832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-exmid 4243 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-1o 6509 df-2o 6510 df-er 6627 df-map 6744 df-en 6835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |