![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmidpw2en | GIF version |
Description: The power set of a set
being equinumerous to set exponentiation with a
base of ordinal 2o is equivalent to
excluded middle. This is
Metamath 100 proof #52. The forward direction uses excluded middle
expressed as EXMID to show this
equinumerosity.
The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
Ref | Expression |
---|---|
exmidpw2en | ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vpwex 4197 | . . . . 5 ⊢ 𝒫 𝑥 ∈ V | |
2 | pp0ex 4207 | . . . . . . 7 ⊢ {∅, {∅}} ∈ V | |
3 | vex 2755 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | mapval 6685 | . . . . . 6 ⊢ ({∅, {∅}} ↑𝑚 𝑥) = {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} |
5 | mapex 6679 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ {∅, {∅}} ∈ V) → {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} ∈ V) | |
6 | 3, 2, 5 | mp2an 426 | . . . . . 6 ⊢ {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} ∈ V |
7 | 4, 6 | eqeltri 2262 | . . . . 5 ⊢ ({∅, {∅}} ↑𝑚 𝑥) ∈ V |
8 | 3 | a1i 9 | . . . . . 6 ⊢ (EXMID → 𝑥 ∈ V) |
9 | 0ex 4145 | . . . . . . 7 ⊢ ∅ ∈ V | |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (EXMID → ∅ ∈ V) |
11 | p0ex 4206 | . . . . . . 7 ⊢ {∅} ∈ V | |
12 | 11 | a1i 9 | . . . . . 6 ⊢ (EXMID → {∅} ∈ V) |
13 | 0nep0 4183 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
14 | 13 | a1i 9 | . . . . . 6 ⊢ (EXMID → ∅ ≠ {∅}) |
15 | exmidexmid 4214 | . . . . . . . 8 ⊢ (EXMID → DECID 𝑝 ∈ 𝑞) | |
16 | 15 | ralrimivw 2564 | . . . . . . 7 ⊢ (EXMID → ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝 ∈ 𝑞) |
17 | 16 | ralrimivw 2564 | . . . . . 6 ⊢ (EXMID → ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝 ∈ 𝑞) |
18 | eqid 2189 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))) = (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))) | |
19 | 8, 10, 12, 14, 17, 18 | pw2f1odc 6862 | . . . . 5 ⊢ (EXMID → (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))):𝒫 𝑥–1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) |
20 | f1oen2g 6780 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ V ∧ ({∅, {∅}} ↑𝑚 𝑥) ∈ V ∧ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))):𝒫 𝑥–1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥)) | |
21 | 1, 7, 19, 20 | mp3an12i 1352 | . . . 4 ⊢ (EXMID → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥)) |
22 | df2o2 6455 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
23 | 22 | oveq1i 5905 | . . . 4 ⊢ (2o ↑𝑚 𝑥) = ({∅, {∅}} ↑𝑚 𝑥) |
24 | 21, 23 | breqtrrdi 4060 | . . 3 ⊢ (EXMID → 𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
25 | 24 | alrimiv 1885 | . 2 ⊢ (EXMID → ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
26 | 1oex 6448 | . . . . 5 ⊢ 1o ∈ V | |
27 | pweq 3593 | . . . . . 6 ⊢ (𝑥 = 1o → 𝒫 𝑥 = 𝒫 1o) | |
28 | oveq2 5903 | . . . . . 6 ⊢ (𝑥 = 1o → (2o ↑𝑚 𝑥) = (2o ↑𝑚 1o)) | |
29 | 27, 28 | breq12d 4031 | . . . . 5 ⊢ (𝑥 = 1o → (𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) ↔ 𝒫 1o ≈ (2o ↑𝑚 1o))) |
30 | 26, 29 | spcv 2846 | . . . 4 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → 𝒫 1o ≈ (2o ↑𝑚 1o)) |
31 | df1o2 6453 | . . . . . 6 ⊢ 1o = {∅} | |
32 | 31 | oveq2i 5906 | . . . . 5 ⊢ (2o ↑𝑚 1o) = (2o ↑𝑚 {∅}) |
33 | 22, 2 | eqeltri 2262 | . . . . . 6 ⊢ 2o ∈ V |
34 | 33, 9 | mapsnen 6836 | . . . . 5 ⊢ (2o ↑𝑚 {∅}) ≈ 2o |
35 | 32, 34 | eqbrtri 4039 | . . . 4 ⊢ (2o ↑𝑚 1o) ≈ 2o |
36 | entr 6809 | . . . 4 ⊢ ((𝒫 1o ≈ (2o ↑𝑚 1o) ∧ (2o ↑𝑚 1o) ≈ 2o) → 𝒫 1o ≈ 2o) | |
37 | 30, 35, 36 | sylancl 413 | . . 3 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → 𝒫 1o ≈ 2o) |
38 | exmidpw 6935 | . . 3 ⊢ (EXMID ↔ 𝒫 1o ≈ 2o) | |
39 | 37, 38 | sylibr 134 | . 2 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → EXMID) |
40 | 25, 39 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 DECID wdc 835 ∀wal 1362 = wceq 1364 ∈ wcel 2160 {cab 2175 ≠ wne 2360 ∀wral 2468 Vcvv 2752 ∅c0 3437 ifcif 3549 𝒫 cpw 3590 {csn 3607 {cpr 3608 class class class wbr 4018 ↦ cmpt 4079 EXMIDwem 4212 ⟶wf 5231 –1-1-onto→wf1o 5234 (class class class)co 5895 1oc1o 6433 2oc2o 6434 ↑𝑚 cmap 6673 ≈ cen 6763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-exmid 4213 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-1o 6440 df-2o 6441 df-er 6558 df-map 6675 df-en 6766 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |