| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw2en | GIF version | ||
| Description: The power set of a set
being equinumerous to set exponentiation with a
base of ordinal 2o is equivalent to
excluded middle. This is
Metamath 100 proof #52. The forward direction uses excluded middle
expressed as EXMID to show this
equinumerosity.
The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| exmidpw2en | ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vpwex 4242 | . . . . 5 ⊢ 𝒫 𝑥 ∈ V | |
| 2 | pp0ex 4252 | . . . . . . 7 ⊢ {∅, {∅}} ∈ V | |
| 3 | vex 2782 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | mapval 6777 | . . . . . 6 ⊢ ({∅, {∅}} ↑𝑚 𝑥) = {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} |
| 5 | mapex 6771 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ {∅, {∅}} ∈ V) → {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} ∈ V) | |
| 6 | 3, 2, 5 | mp2an 426 | . . . . . 6 ⊢ {𝑓 ∣ 𝑓:𝑥⟶{∅, {∅}}} ∈ V |
| 7 | 4, 6 | eqeltri 2282 | . . . . 5 ⊢ ({∅, {∅}} ↑𝑚 𝑥) ∈ V |
| 8 | 3 | a1i 9 | . . . . . 6 ⊢ (EXMID → 𝑥 ∈ V) |
| 9 | 0ex 4190 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (EXMID → ∅ ∈ V) |
| 11 | p0ex 4251 | . . . . . . 7 ⊢ {∅} ∈ V | |
| 12 | 11 | a1i 9 | . . . . . 6 ⊢ (EXMID → {∅} ∈ V) |
| 13 | 0nep0 4228 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
| 14 | 13 | a1i 9 | . . . . . 6 ⊢ (EXMID → ∅ ≠ {∅}) |
| 15 | exmidexmid 4259 | . . . . . . . 8 ⊢ (EXMID → DECID 𝑝 ∈ 𝑞) | |
| 16 | 15 | ralrimivw 2584 | . . . . . . 7 ⊢ (EXMID → ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝 ∈ 𝑞) |
| 17 | 16 | ralrimivw 2584 | . . . . . 6 ⊢ (EXMID → ∀𝑝 ∈ 𝑥 ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝 ∈ 𝑞) |
| 18 | eqid 2209 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))) = (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))) | |
| 19 | 8, 10, 12, 14, 17, 18 | pw2f1odc 6964 | . . . . 5 ⊢ (EXMID → (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))):𝒫 𝑥–1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) |
| 20 | f1oen2g 6876 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ V ∧ ({∅, {∅}} ↑𝑚 𝑥) ∈ V ∧ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧 ∈ 𝑥 ↦ if(𝑧 ∈ 𝑦, {∅}, ∅))):𝒫 𝑥–1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥)) | |
| 21 | 1, 7, 19, 20 | mp3an12i 1356 | . . . 4 ⊢ (EXMID → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥)) |
| 22 | df2o2 6547 | . . . . 5 ⊢ 2o = {∅, {∅}} | |
| 23 | 22 | oveq1i 5984 | . . . 4 ⊢ (2o ↑𝑚 𝑥) = ({∅, {∅}} ↑𝑚 𝑥) |
| 24 | 21, 23 | breqtrrdi 4104 | . . 3 ⊢ (EXMID → 𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| 25 | 24 | alrimiv 1900 | . 2 ⊢ (EXMID → ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| 26 | 1oex 6540 | . . . . 5 ⊢ 1o ∈ V | |
| 27 | pweq 3632 | . . . . . 6 ⊢ (𝑥 = 1o → 𝒫 𝑥 = 𝒫 1o) | |
| 28 | oveq2 5982 | . . . . . 6 ⊢ (𝑥 = 1o → (2o ↑𝑚 𝑥) = (2o ↑𝑚 1o)) | |
| 29 | 27, 28 | breq12d 4075 | . . . . 5 ⊢ (𝑥 = 1o → (𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) ↔ 𝒫 1o ≈ (2o ↑𝑚 1o))) |
| 30 | 26, 29 | spcv 2877 | . . . 4 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → 𝒫 1o ≈ (2o ↑𝑚 1o)) |
| 31 | df1o2 6545 | . . . . . 6 ⊢ 1o = {∅} | |
| 32 | 31 | oveq2i 5985 | . . . . 5 ⊢ (2o ↑𝑚 1o) = (2o ↑𝑚 {∅}) |
| 33 | 22, 2 | eqeltri 2282 | . . . . . 6 ⊢ 2o ∈ V |
| 34 | 33, 9 | mapsnen 6934 | . . . . 5 ⊢ (2o ↑𝑚 {∅}) ≈ 2o |
| 35 | 32, 34 | eqbrtri 4083 | . . . 4 ⊢ (2o ↑𝑚 1o) ≈ 2o |
| 36 | entr 6906 | . . . 4 ⊢ ((𝒫 1o ≈ (2o ↑𝑚 1o) ∧ (2o ↑𝑚 1o) ≈ 2o) → 𝒫 1o ≈ 2o) | |
| 37 | 30, 35, 36 | sylancl 413 | . . 3 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → 𝒫 1o ≈ 2o) |
| 38 | exmidpw 7038 | . . 3 ⊢ (EXMID ↔ 𝒫 1o ≈ 2o) | |
| 39 | 37, 38 | sylibr 134 | . 2 ⊢ (∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥) → EXMID) |
| 40 | 25, 39 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o ↑𝑚 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 DECID wdc 838 ∀wal 1373 = wceq 1375 ∈ wcel 2180 {cab 2195 ≠ wne 2380 ∀wral 2488 Vcvv 2779 ∅c0 3471 ifcif 3582 𝒫 cpw 3629 {csn 3646 {cpr 3647 class class class wbr 4062 ↦ cmpt 4124 EXMIDwem 4257 ⟶wf 5290 –1-1-onto→wf1o 5293 (class class class)co 5974 1oc1o 6525 2oc2o 6526 ↑𝑚 cmap 6765 ≈ cen 6855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-exmid 4258 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-1o 6532 df-2o 6533 df-er 6650 df-map 6767 df-en 6858 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |