ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw2en GIF version

Theorem exmidpw2en 7016
Description: The power set of a set being equinumerous to set exponentiation with a base of ordinal 2o is equivalent to excluded middle. This is Metamath 100 proof #52. The forward direction uses excluded middle expressed as EXMID to show this equinumerosity.

The reverse direction is the one which establishes that power set being equinumerous to set exponentiation implies excluded middle. This resolves the question of whether we will be able to prove this equinumerosity theorem in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.)

Assertion
Ref Expression
exmidpw2en (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥))

Proof of Theorem exmidpw2en
Dummy variables 𝑓 𝑝 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vpwex 4227 . . . . 5 𝒫 𝑥 ∈ V
2 pp0ex 4237 . . . . . . 7 {∅, {∅}} ∈ V
3 vex 2776 . . . . . . 7 𝑥 ∈ V
42, 3mapval 6754 . . . . . 6 ({∅, {∅}} ↑𝑚 𝑥) = {𝑓𝑓:𝑥⟶{∅, {∅}}}
5 mapex 6748 . . . . . . 7 ((𝑥 ∈ V ∧ {∅, {∅}} ∈ V) → {𝑓𝑓:𝑥⟶{∅, {∅}}} ∈ V)
63, 2, 5mp2an 426 . . . . . 6 {𝑓𝑓:𝑥⟶{∅, {∅}}} ∈ V
74, 6eqeltri 2279 . . . . 5 ({∅, {∅}} ↑𝑚 𝑥) ∈ V
83a1i 9 . . . . . 6 (EXMID𝑥 ∈ V)
9 0ex 4175 . . . . . . 7 ∅ ∈ V
109a1i 9 . . . . . 6 (EXMID → ∅ ∈ V)
11 p0ex 4236 . . . . . . 7 {∅} ∈ V
1211a1i 9 . . . . . 6 (EXMID → {∅} ∈ V)
13 0nep0 4213 . . . . . . 7 ∅ ≠ {∅}
1413a1i 9 . . . . . 6 (EXMID → ∅ ≠ {∅})
15 exmidexmid 4244 . . . . . . . 8 (EXMIDDECID 𝑝𝑞)
1615ralrimivw 2581 . . . . . . 7 (EXMID → ∀𝑞 ∈ 𝒫 𝑥DECID 𝑝𝑞)
1716ralrimivw 2581 . . . . . 6 (EXMID → ∀𝑝𝑥𝑞 ∈ 𝒫 𝑥DECID 𝑝𝑞)
18 eqid 2206 . . . . . 6 (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧𝑥 ↦ if(𝑧𝑦, {∅}, ∅))) = (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧𝑥 ↦ if(𝑧𝑦, {∅}, ∅)))
198, 10, 12, 14, 17, 18pw2f1odc 6939 . . . . 5 (EXMID → (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧𝑥 ↦ if(𝑧𝑦, {∅}, ∅))):𝒫 𝑥1-1-onto→({∅, {∅}} ↑𝑚 𝑥))
20 f1oen2g 6853 . . . . 5 ((𝒫 𝑥 ∈ V ∧ ({∅, {∅}} ↑𝑚 𝑥) ∈ V ∧ (𝑦 ∈ 𝒫 𝑥 ↦ (𝑧𝑥 ↦ if(𝑧𝑦, {∅}, ∅))):𝒫 𝑥1-1-onto→({∅, {∅}} ↑𝑚 𝑥)) → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥))
211, 7, 19, 20mp3an12i 1354 . . . 4 (EXMID → 𝒫 𝑥 ≈ ({∅, {∅}} ↑𝑚 𝑥))
22 df2o2 6524 . . . . 5 2o = {∅, {∅}}
2322oveq1i 5961 . . . 4 (2o𝑚 𝑥) = ({∅, {∅}} ↑𝑚 𝑥)
2421, 23breqtrrdi 4089 . . 3 (EXMID → 𝒫 𝑥 ≈ (2o𝑚 𝑥))
2524alrimiv 1898 . 2 (EXMID → ∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥))
26 1oex 6517 . . . . 5 1o ∈ V
27 pweq 3620 . . . . . 6 (𝑥 = 1o → 𝒫 𝑥 = 𝒫 1o)
28 oveq2 5959 . . . . . 6 (𝑥 = 1o → (2o𝑚 𝑥) = (2o𝑚 1o))
2927, 28breq12d 4060 . . . . 5 (𝑥 = 1o → (𝒫 𝑥 ≈ (2o𝑚 𝑥) ↔ 𝒫 1o ≈ (2o𝑚 1o)))
3026, 29spcv 2868 . . . 4 (∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥) → 𝒫 1o ≈ (2o𝑚 1o))
31 df1o2 6522 . . . . . 6 1o = {∅}
3231oveq2i 5962 . . . . 5 (2o𝑚 1o) = (2o𝑚 {∅})
3322, 2eqeltri 2279 . . . . . 6 2o ∈ V
3433, 9mapsnen 6910 . . . . 5 (2o𝑚 {∅}) ≈ 2o
3532, 34eqbrtri 4068 . . . 4 (2o𝑚 1o) ≈ 2o
36 entr 6883 . . . 4 ((𝒫 1o ≈ (2o𝑚 1o) ∧ (2o𝑚 1o) ≈ 2o) → 𝒫 1o ≈ 2o)
3730, 35, 36sylancl 413 . . 3 (∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥) → 𝒫 1o ≈ 2o)
38 exmidpw 7012 . . 3 (EXMID ↔ 𝒫 1o ≈ 2o)
3937, 38sylibr 134 . 2 (∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥) → EXMID)
4025, 39impbii 126 1 (EXMID ↔ ∀𝑥𝒫 𝑥 ≈ (2o𝑚 𝑥))
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 836  wal 1371   = wceq 1373  wcel 2177  {cab 2192  wne 2377  wral 2485  Vcvv 2773  c0 3461  ifcif 3572  𝒫 cpw 3617  {csn 3634  {cpr 3635   class class class wbr 4047  cmpt 4109  EXMIDwem 4242  wf 5272  1-1-ontowf1o 5275  (class class class)co 5951  1oc1o 6502  2oc2o 6503  𝑚 cmap 6742  cen 6832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-exmid 4243  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-1o 6509  df-2o 6510  df-er 6627  df-map 6744  df-en 6835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator