ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntridm GIF version

Theorem ntridm 13629
Description: The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ntridm ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘†)) = ((intβ€˜π½)β€˜π‘†))

Proof of Theorem ntridm
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = βˆͺ 𝐽
21ntropn 13620 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) ∈ 𝐽)
31ntrss3 13626 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) βŠ† 𝑋)
41isopn3 13628 . . 3 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π‘†) βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π‘†) ∈ 𝐽 ↔ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘†)) = ((intβ€˜π½)β€˜π‘†)))
53, 4syldan 282 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π‘†) ∈ 𝐽 ↔ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘†)) = ((intβ€˜π½)β€˜π‘†)))
62, 5mpbid 147 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘†)) = ((intβ€˜π½)β€˜π‘†))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148   βŠ† wss 3130  βˆͺ cuni 3810  β€˜cfv 5217  Topctop 13500  intcnt 13596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-top 13501  df-ntr 13599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator