| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| ovmpog | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 2 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 3 | 1, 2 | sylan9eq 2262 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| 4 | ovmpog.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 3, 4 | ovmpoga 6105 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ∈ cmpo 5976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 |
| This theorem is referenced by: ovmpo 6111 oav 6570 omv 6571 oeiv 6572 mapvalg 6775 pmvalg 6776 mulpipq2 7526 genipv 7664 genpelxp 7666 subval 8306 divvalap 8789 cnref1o 9814 modqval 10513 frecuzrdgrrn 10597 frec2uzrdg 10598 frecuzrdgrcl 10599 frecuzrdgsuc 10603 frecuzrdgrclt 10604 frecuzrdgg 10605 frecuzrdgsuctlem 10612 seq3val 10649 seqvalcd 10650 seqf 10653 seq3p1 10654 seqovcd 10656 seqp1cd 10659 exp3val 10730 bcval 10938 ccatfvalfi 11093 shftfvalg 11295 shftfval 11298 cnrecnv 11387 gcdval 12446 sqpweven 12663 2sqpwodd 12664 ennnfonelemp1 12943 nninfdclemcl 12985 nninfdclemp1 12987 ressvalsets 13063 imasex 13304 qusex 13324 mhmex 13461 releqgg 13723 eqgex 13724 isghm 13746 gsumfzfsumlemm 14516 cnfldui 14518 expghmap 14536 cnprcl2k 14845 xmetxp 15146 expcn 15208 cncfval 15211 dvply2g 15405 rpcxpef 15533 rplogbval 15584 mpodvdsmulf1o 15629 fsumdvdsmul 15630 |
| Copyright terms: Public domain | W3C validator |