| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| ovmpog | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 2 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 3 | 1, 2 | sylan9eq 2259 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| 4 | ovmpog.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 3, 4 | ovmpoga 6082 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ∈ cmpo 5953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 |
| This theorem is referenced by: ovmpo 6088 oav 6547 omv 6548 oeiv 6549 mapvalg 6752 pmvalg 6753 mulpipq2 7491 genipv 7629 genpelxp 7631 subval 8271 divvalap 8754 cnref1o 9779 modqval 10476 frecuzrdgrrn 10560 frec2uzrdg 10561 frecuzrdgrcl 10562 frecuzrdgsuc 10566 frecuzrdgrclt 10567 frecuzrdgg 10568 frecuzrdgsuctlem 10575 seq3val 10612 seqvalcd 10613 seqf 10616 seq3p1 10617 seqovcd 10619 seqp1cd 10622 exp3val 10693 bcval 10901 ccatfvalfi 11056 shftfvalg 11173 shftfval 11176 cnrecnv 11265 gcdval 12324 sqpweven 12541 2sqpwodd 12542 ennnfonelemp1 12821 nninfdclemcl 12863 nninfdclemp1 12865 ressvalsets 12940 imasex 13181 qusex 13201 mhmex 13338 releqgg 13600 eqgex 13601 isghm 13623 gsumfzfsumlemm 14393 cnfldui 14395 expghmap 14413 cnprcl2k 14722 xmetxp 15023 expcn 15085 cncfval 15088 dvply2g 15282 rpcxpef 15410 rplogbval 15461 mpodvdsmulf1o 15506 fsumdvdsmul 15507 |
| Copyright terms: Public domain | W3C validator |