| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| ovmpog | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 2 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 3 | 1, 2 | sylan9eq 2282 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| 4 | ovmpog.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 3, 4 | ovmpoga 6140 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ∈ cmpo 6009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 |
| This theorem is referenced by: ovmpo 6146 oav 6608 omv 6609 oeiv 6610 mapvalg 6813 pmvalg 6814 mulpipq2 7566 genipv 7704 genpelxp 7706 subval 8346 divvalap 8829 cnref1o 9854 modqval 10554 frecuzrdgrrn 10638 frec2uzrdg 10639 frecuzrdgrcl 10640 frecuzrdgsuc 10644 frecuzrdgrclt 10645 frecuzrdgg 10646 frecuzrdgsuctlem 10653 seq3val 10690 seqvalcd 10691 seqf 10694 seq3p1 10695 seqovcd 10697 seqp1cd 10700 exp3val 10771 bcval 10979 ccatfvalfi 11135 shftfvalg 11337 shftfval 11340 cnrecnv 11429 gcdval 12488 sqpweven 12705 2sqpwodd 12706 ennnfonelemp1 12985 nninfdclemcl 13027 nninfdclemp1 13029 ressvalsets 13105 imasex 13346 qusex 13366 mhmex 13503 releqgg 13765 eqgex 13766 isghm 13788 gsumfzfsumlemm 14559 cnfldui 14561 expghmap 14579 cnprcl2k 14888 xmetxp 15189 expcn 15251 cncfval 15254 dvply2g 15448 rpcxpef 15576 rplogbval 15627 mpodvdsmulf1o 15672 fsumdvdsmul 15673 |
| Copyright terms: Public domain | W3C validator |