| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ovmpog | GIF version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | 
| ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | 
| ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| Ref | Expression | 
|---|---|
| ovmpog | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
| 2 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
| 3 | 1, 2 | sylan9eq 2249 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | 
| 4 | ovmpog.3 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 5 | 3, 4 | ovmpoga 6052 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ∈ cmpo 5924 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 | 
| This theorem is referenced by: ovmpo 6058 oav 6512 omv 6513 oeiv 6514 mapvalg 6717 pmvalg 6718 mulpipq2 7438 genipv 7576 genpelxp 7578 subval 8218 divvalap 8701 cnref1o 9725 modqval 10416 frecuzrdgrrn 10500 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgsuc 10506 frecuzrdgrclt 10507 frecuzrdgg 10508 frecuzrdgsuctlem 10515 seq3val 10552 seqvalcd 10553 seqf 10556 seq3p1 10557 seqovcd 10559 seqp1cd 10562 exp3val 10633 bcval 10841 shftfvalg 10983 shftfval 10986 cnrecnv 11075 gcdval 12126 sqpweven 12343 2sqpwodd 12344 ennnfonelemp1 12623 nninfdclemcl 12665 nninfdclemp1 12667 ressvalsets 12742 imasex 12948 qusex 12968 mhmex 13094 releqgg 13350 eqgex 13351 isghm 13373 gsumfzfsumlemm 14143 cnfldui 14145 expghmap 14163 cnprcl2k 14442 xmetxp 14743 expcn 14805 cncfval 14808 dvply2g 15002 rpcxpef 15130 rplogbval 15181 mpodvdsmulf1o 15226 fsumdvdsmul 15227 | 
| Copyright terms: Public domain | W3C validator |