ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpog GIF version

Theorem ovmpog 6061
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1 (𝑥 = 𝐴𝑅 = 𝐺)
ovmpog.2 (𝑦 = 𝐵𝐺 = 𝑆)
ovmpog.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpog ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpog
StepHypRef Expression
1 ovmpog.1 . . 3 (𝑥 = 𝐴𝑅 = 𝐺)
2 ovmpog.2 . . 3 (𝑦 = 𝐵𝐺 = 𝑆)
31, 2sylan9eq 2249 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
4 ovmpog.3 . 2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
53, 4ovmpoga 6056 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5925  cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930
This theorem is referenced by:  ovmpo  6062  oav  6521  omv  6522  oeiv  6523  mapvalg  6726  pmvalg  6727  mulpipq2  7457  genipv  7595  genpelxp  7597  subval  8237  divvalap  8720  cnref1o  9744  modqval  10435  frecuzrdgrrn  10519  frec2uzrdg  10520  frecuzrdgrcl  10521  frecuzrdgsuc  10525  frecuzrdgrclt  10526  frecuzrdgg  10527  frecuzrdgsuctlem  10534  seq3val  10571  seqvalcd  10572  seqf  10575  seq3p1  10576  seqovcd  10578  seqp1cd  10581  exp3val  10652  bcval  10860  shftfvalg  11002  shftfval  11005  cnrecnv  11094  gcdval  12153  sqpweven  12370  2sqpwodd  12371  ennnfonelemp1  12650  nninfdclemcl  12692  nninfdclemp1  12694  ressvalsets  12769  imasex  13009  qusex  13029  mhmex  13166  releqgg  13428  eqgex  13429  isghm  13451  gsumfzfsumlemm  14221  cnfldui  14223  expghmap  14241  cnprcl2k  14550  xmetxp  14851  expcn  14913  cncfval  14916  dvply2g  15110  rpcxpef  15238  rplogbval  15289  mpodvdsmulf1o  15334  fsumdvdsmul  15335
  Copyright terms: Public domain W3C validator