ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpog GIF version

Theorem ovmpog 6031
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1 (𝑥 = 𝐴𝑅 = 𝐺)
ovmpog.2 (𝑦 = 𝐵𝐺 = 𝑆)
ovmpog.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpog ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpog
StepHypRef Expression
1 ovmpog.1 . . 3 (𝑥 = 𝐴𝑅 = 𝐺)
2 ovmpog.2 . . 3 (𝑦 = 𝐵𝐺 = 𝑆)
31, 2sylan9eq 2242 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
4 ovmpog.3 . 2 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
53, 4ovmpoga 6026 1 ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2160  (class class class)co 5896  cmpo 5898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901
This theorem is referenced by:  ovmpo  6032  oav  6479  omv  6480  oeiv  6481  mapvalg  6684  pmvalg  6685  mulpipq2  7400  genipv  7538  genpelxp  7540  subval  8179  divvalap  8661  cnref1o  9680  modqval  10355  frecuzrdgrrn  10439  frec2uzrdg  10440  frecuzrdgrcl  10441  frecuzrdgsuc  10445  frecuzrdgrclt  10446  frecuzrdgg  10447  frecuzrdgsuctlem  10454  seq3val  10489  seqvalcd  10490  seqf  10492  seq3p1  10493  seqovcd  10494  seqp1cd  10497  exp3val  10553  bcval  10761  shftfvalg  10859  shftfval  10862  cnrecnv  10951  gcdval  11992  sqpweven  12207  2sqpwodd  12208  ennnfonelemp1  12457  nninfdclemcl  12499  nninfdclemp1  12501  ressvalsets  12576  imasex  12782  qusex  12802  mhmex  12914  releqgg  13159  eqgex  13160  isghm  13182  cnprcl2k  14163  xmetxp  14464  cncfval  14516  rpcxpef  14772  rplogbval  14820
  Copyright terms: Public domain W3C validator