![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fczpsrbag | GIF version |
Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
fczpsrbag | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 9258 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → 0 ∈ ℕ0) |
3 | 2 | fmpttd 5714 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0) |
4 | eqid 2193 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ 0) = (𝑥 ∈ 𝐼 ↦ 0) | |
5 | 4 | mptpreima 5160 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} |
6 | 0nnn 9011 | . . . . . . 7 ⊢ ¬ 0 ∈ ℕ | |
7 | 6 | rgenw 2549 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ |
8 | rabeq0 3477 | . . . . . 6 ⊢ ({𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ ↔ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ) | |
9 | 7, 8 | mpbir 146 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ |
10 | 5, 9 | eqtri 2214 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = ∅ |
11 | 0fin 6942 | . . . 4 ⊢ ∅ ∈ Fin | |
12 | 10, 11 | eqeltri 2266 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin |
13 | 12 | a1i 9 | . 2 ⊢ (𝐼 ∈ 𝑉 → (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin) |
14 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
15 | 14 | psrbag 14166 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin))) |
16 | 3, 13, 15 | mpbir2and 946 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ∅c0 3447 ↦ cmpt 4091 ◡ccnv 4659 “ cima 4663 ⟶wf 5251 (class class class)co 5919 ↑𝑚 cmap 6704 Fincfn 6796 0cc0 7874 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-map 6706 df-en 6797 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 df-n0 9244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |