| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fczpsrbag | GIF version | ||
| Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| fczpsrbag | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9345 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → 0 ∈ ℕ0) |
| 3 | 2 | fmpttd 5758 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0) |
| 4 | eqid 2207 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ 0) = (𝑥 ∈ 𝐼 ↦ 0) | |
| 5 | 4 | mptpreima 5195 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} |
| 6 | 0nnn 9098 | . . . . . . 7 ⊢ ¬ 0 ∈ ℕ | |
| 7 | 6 | rgenw 2563 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ |
| 8 | rabeq0 3498 | . . . . . 6 ⊢ ({𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ ↔ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ) | |
| 9 | 7, 8 | mpbir 146 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ |
| 10 | 5, 9 | eqtri 2228 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = ∅ |
| 11 | 0fin 7007 | . . . 4 ⊢ ∅ ∈ Fin | |
| 12 | 10, 11 | eqeltri 2280 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin |
| 13 | 12 | a1i 9 | . 2 ⊢ (𝐼 ∈ 𝑉 → (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin) |
| 14 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 15 | 14 | psrbag 14546 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin))) |
| 16 | 3, 13, 15 | mpbir2and 947 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∀wral 2486 {crab 2490 ∅c0 3468 ↦ cmpt 4121 ◡ccnv 4692 “ cima 4696 ⟶wf 5286 (class class class)co 5967 ↑𝑚 cmap 6758 Fincfn 6850 0cc0 7960 ℕcn 9071 ℕ0cn0 9330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-map 6760 df-en 6851 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |