| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fczpsrbag | GIF version | ||
| Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| fczpsrbag | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9384 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → 0 ∈ ℕ0) |
| 3 | 2 | fmpttd 5790 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0) |
| 4 | eqid 2229 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ 0) = (𝑥 ∈ 𝐼 ↦ 0) | |
| 5 | 4 | mptpreima 5222 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} |
| 6 | 0nnn 9137 | . . . . . . 7 ⊢ ¬ 0 ∈ ℕ | |
| 7 | 6 | rgenw 2585 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ |
| 8 | rabeq0 3521 | . . . . . 6 ⊢ ({𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ ↔ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ) | |
| 9 | 7, 8 | mpbir 146 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ |
| 10 | 5, 9 | eqtri 2250 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = ∅ |
| 11 | 0fin 7046 | . . . 4 ⊢ ∅ ∈ Fin | |
| 12 | 10, 11 | eqeltri 2302 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin |
| 13 | 12 | a1i 9 | . 2 ⊢ (𝐼 ∈ 𝑉 → (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin) |
| 14 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 15 | 14 | psrbag 14633 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin))) |
| 16 | 3, 13, 15 | mpbir2and 950 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ∅c0 3491 ↦ cmpt 4145 ◡ccnv 4718 “ cima 4722 ⟶wf 5314 (class class class)co 6001 ↑𝑚 cmap 6795 Fincfn 6887 0cc0 7999 ℕcn 9110 ℕ0cn0 9369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-map 6797 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |