| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fczpsrbag | GIF version | ||
| Description: The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| fczpsrbag | ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 9264 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → 0 ∈ ℕ0) |
| 3 | 2 | fmpttd 5717 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0) |
| 4 | eqid 2196 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ 0) = (𝑥 ∈ 𝐼 ↦ 0) | |
| 5 | 4 | mptpreima 5163 | . . . . 5 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} |
| 6 | 0nnn 9017 | . . . . . . 7 ⊢ ¬ 0 ∈ ℕ | |
| 7 | 6 | rgenw 2552 | . . . . . 6 ⊢ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ |
| 8 | rabeq0 3480 | . . . . . 6 ⊢ ({𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ ↔ ∀𝑥 ∈ 𝐼 ¬ 0 ∈ ℕ) | |
| 9 | 7, 8 | mpbir 146 | . . . . 5 ⊢ {𝑥 ∈ 𝐼 ∣ 0 ∈ ℕ} = ∅ |
| 10 | 5, 9 | eqtri 2217 | . . . 4 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) = ∅ |
| 11 | 0fin 6945 | . . . 4 ⊢ ∅ ∈ Fin | |
| 12 | 10, 11 | eqeltri 2269 | . . 3 ⊢ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin |
| 13 | 12 | a1i 9 | . 2 ⊢ (𝐼 ∈ 𝑉 → (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin) |
| 14 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 15 | 14 | psrbag 14223 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷 ↔ ((𝑥 ∈ 𝐼 ↦ 0):𝐼⟶ℕ0 ∧ (◡(𝑥 ∈ 𝐼 ↦ 0) “ ℕ) ∈ Fin))) |
| 16 | 3, 13, 15 | mpbir2and 946 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∅c0 3450 ↦ cmpt 4094 ◡ccnv 4662 “ cima 4666 ⟶wf 5254 (class class class)co 5922 ↑𝑚 cmap 6707 Fincfn 6799 0cc0 7879 ℕcn 8990 ℕ0cn0 9249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-inn 8991 df-n0 9250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |