ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslsp GIF version

Theorem lsslsp 14358
Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.)
Hypotheses
Ref Expression
lsslsp.x 𝑋 = (𝑊s 𝑈)
lsslsp.m 𝑀 = (LSpan‘𝑊)
lsslsp.n 𝑁 = (LSpan‘𝑋)
lsslsp.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsslsp ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) = (𝑀𝐺))

Proof of Theorem lsslsp
StepHypRef Expression
1 lsslsp.x . . . . 5 𝑋 = (𝑊s 𝑈)
2 lsslsp.l . . . . 5 𝐿 = (LSubSp‘𝑊)
31, 2lsslmod 14309 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
433adant3 1022 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 ∈ LMod)
5 simp1 1002 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑊 ∈ LMod)
6 simp3 1004 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺𝑈)
7 eqid 2209 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
87, 2lssssg 14289 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑈 ⊆ (Base‘𝑊))
983adant3 1022 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 ⊆ (Base‘𝑊))
106, 9sstrd 3214 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑊))
11 lsslsp.m . . . . . 6 𝑀 = (LSpan‘𝑊)
127, 2, 11lspcl 14320 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀𝐺) ∈ 𝐿)
135, 10, 12syl2anc 411 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ 𝐿)
142, 11lspssp 14332 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ 𝑈)
15 eqid 2209 . . . . . 6 (LSubSp‘𝑋) = (LSubSp‘𝑋)
161, 2, 15lsslss 14310 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
17163adant3 1022 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
1813, 14, 17mpbir2and 949 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ (LSubSp‘𝑋))
197, 11lspssid 14329 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀𝐺))
205, 10, 19syl2anc 411 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑀𝐺))
21 lsslsp.n . . . 4 𝑁 = (LSpan‘𝑋)
2215, 21lspssp 14332 . . 3 ((𝑋 ∈ LMod ∧ (𝑀𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀𝐺)) → (𝑁𝐺) ⊆ (𝑀𝐺))
234, 18, 20, 22syl3anc 1252 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ⊆ (𝑀𝐺))
241a1i 9 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 = (𝑊s 𝑈))
25 eqidd 2210 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (Base‘𝑊) = (Base‘𝑊))
2624, 25, 5, 9ressbas2d 13067 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 = (Base‘𝑋))
276, 26sseqtrd 3242 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑋))
28 eqid 2209 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
2928, 15, 21lspcl 14320 . . . . . 6 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
304, 27, 29syl2anc 411 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
311, 2, 15lsslss 14310 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
32313adant3 1022 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
3330, 32mpbid 147 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈))
3433simpld 112 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ 𝐿)
3528, 21lspssid 14329 . . . 4 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁𝐺))
364, 27, 35syl2anc 411 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑁𝐺))
372, 11lspssp 14332 . . 3 ((𝑊 ∈ LMod ∧ (𝑁𝐺) ∈ 𝐿𝐺 ⊆ (𝑁𝐺)) → (𝑀𝐺) ⊆ (𝑁𝐺))
385, 34, 36, 37syl3anc 1252 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ (𝑁𝐺))
3923, 38eqssd 3221 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) = (𝑀𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wss 3177  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  LModclmod 14216  LSubSpclss 14281  LSpanclspn 14315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-sbg 13504  df-subg 13673  df-mgp 13850  df-ur 13889  df-ring 13927  df-lmod 14218  df-lssm 14282  df-lsp 14316
This theorem is referenced by:  lss0v  14359
  Copyright terms: Public domain W3C validator