Proof of Theorem lsslsp
| Step | Hyp | Ref
| Expression |
| 1 | | lsslsp.x |
. . . . 5
⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| 2 | | lsslsp.l |
. . . . 5
⊢ 𝐿 = (LSubSp‘𝑊) |
| 3 | 1, 2 | lsslmod 14012 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
| 4 | 3 | 3adant3 1019 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 ∈ LMod) |
| 5 | | simp1 999 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑊 ∈ LMod) |
| 6 | | simp3 1001 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ 𝑈) |
| 7 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 8 | 7, 2 | lssssg 13992 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑈 ⊆ (Base‘𝑊)) |
| 9 | 8 | 3adant3 1019 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝑊)) |
| 10 | 6, 9 | sstrd 3194 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑊)) |
| 11 | | lsslsp.m |
. . . . . 6
⊢ 𝑀 = (LSpan‘𝑊) |
| 12 | 7, 2, 11 | lspcl 14023 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀‘𝐺) ∈ 𝐿) |
| 13 | 5, 10, 12 | syl2anc 411 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ 𝐿) |
| 14 | 2, 11 | lspssp 14035 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ 𝑈) |
| 15 | | eqid 2196 |
. . . . . 6
⊢
(LSubSp‘𝑋) =
(LSubSp‘𝑋) |
| 16 | 1, 2, 15 | lsslss 14013 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
| 17 | 16 | 3adant3 1019 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
| 18 | 13, 14, 17 | mpbir2and 946 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ (LSubSp‘𝑋)) |
| 19 | 7, 11 | lspssid 14032 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀‘𝐺)) |
| 20 | 5, 10, 19 | syl2anc 411 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑀‘𝐺)) |
| 21 | | lsslsp.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑋) |
| 22 | 15, 21 | lspssp 14035 |
. . 3
⊢ ((𝑋 ∈ LMod ∧ (𝑀‘𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀‘𝐺)) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
| 23 | 4, 18, 20, 22 | syl3anc 1249 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
| 24 | 1 | a1i 9 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 = (𝑊 ↾s 𝑈)) |
| 25 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (Base‘𝑊) = (Base‘𝑊)) |
| 26 | 24, 25, 5, 9 | ressbas2d 12771 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 = (Base‘𝑋)) |
| 27 | 6, 26 | sseqtrd 3222 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑋)) |
| 28 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 29 | 28, 15, 21 | lspcl 14023 |
. . . . . 6
⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
| 30 | 4, 27, 29 | syl2anc 411 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
| 31 | 1, 2, 15 | lsslss 14013 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
| 32 | 31 | 3adant3 1019 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
| 33 | 30, 32 | mpbid 147 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈)) |
| 34 | 33 | simpld 112 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ 𝐿) |
| 35 | 28, 21 | lspssid 14032 |
. . . 4
⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁‘𝐺)) |
| 36 | 4, 27, 35 | syl2anc 411 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑁‘𝐺)) |
| 37 | 2, 11 | lspssp 14035 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐺) ∈ 𝐿 ∧ 𝐺 ⊆ (𝑁‘𝐺)) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
| 38 | 5, 34, 36, 37 | syl3anc 1249 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
| 39 | 23, 38 | eqssd 3201 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) |