ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsslsp GIF version

Theorem lsslsp 13928
Description: Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014.) Terms in the equation were swapped as proposed by NM on 15-Mar-2015. (Revised by AV, 18-Apr-2025.)
Hypotheses
Ref Expression
lsslsp.x 𝑋 = (𝑊s 𝑈)
lsslsp.m 𝑀 = (LSpan‘𝑊)
lsslsp.n 𝑁 = (LSpan‘𝑋)
lsslsp.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsslsp ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) = (𝑀𝐺))

Proof of Theorem lsslsp
StepHypRef Expression
1 lsslsp.x . . . . 5 𝑋 = (𝑊s 𝑈)
2 lsslsp.l . . . . 5 𝐿 = (LSubSp‘𝑊)
31, 2lsslmod 13879 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
433adant3 1019 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 ∈ LMod)
5 simp1 999 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑊 ∈ LMod)
6 simp3 1001 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺𝑈)
7 eqid 2193 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
87, 2lssssg 13859 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑈 ⊆ (Base‘𝑊))
983adant3 1019 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 ⊆ (Base‘𝑊))
106, 9sstrd 3190 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑊))
11 lsslsp.m . . . . . 6 𝑀 = (LSpan‘𝑊)
127, 2, 11lspcl 13890 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀𝐺) ∈ 𝐿)
135, 10, 12syl2anc 411 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ 𝐿)
142, 11lspssp 13902 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ 𝑈)
15 eqid 2193 . . . . . 6 (LSubSp‘𝑋) = (LSubSp‘𝑋)
161, 2, 15lsslss 13880 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
17163adant3 1019 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑀𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀𝐺) ∈ 𝐿 ∧ (𝑀𝐺) ⊆ 𝑈)))
1813, 14, 17mpbir2and 946 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ∈ (LSubSp‘𝑋))
197, 11lspssid 13899 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀𝐺))
205, 10, 19syl2anc 411 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑀𝐺))
21 lsslsp.n . . . 4 𝑁 = (LSpan‘𝑋)
2215, 21lspssp 13902 . . 3 ((𝑋 ∈ LMod ∧ (𝑀𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀𝐺)) → (𝑁𝐺) ⊆ (𝑀𝐺))
234, 18, 20, 22syl3anc 1249 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ⊆ (𝑀𝐺))
241a1i 9 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑋 = (𝑊s 𝑈))
25 eqidd 2194 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (Base‘𝑊) = (Base‘𝑊))
2624, 25, 5, 9ressbas2d 12689 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝑈 = (Base‘𝑋))
276, 26sseqtrd 3218 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (Base‘𝑋))
28 eqid 2193 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
2928, 15, 21lspcl 13890 . . . . . 6 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
304, 27, 29syl2anc 411 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ (LSubSp‘𝑋))
311, 2, 15lsslss 13880 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
32313adant3 1019 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈)))
3330, 32mpbid 147 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → ((𝑁𝐺) ∈ 𝐿 ∧ (𝑁𝐺) ⊆ 𝑈))
3433simpld 112 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) ∈ 𝐿)
3528, 21lspssid 13899 . . . 4 ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁𝐺))
364, 27, 35syl2anc 411 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → 𝐺 ⊆ (𝑁𝐺))
372, 11lspssp 13902 . . 3 ((𝑊 ∈ LMod ∧ (𝑁𝐺) ∈ 𝐿𝐺 ⊆ (𝑁𝐺)) → (𝑀𝐺) ⊆ (𝑁𝐺))
385, 34, 36, 37syl3anc 1249 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑀𝐺) ⊆ (𝑁𝐺))
3923, 38eqssd 3197 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿𝐺𝑈) → (𝑁𝐺) = (𝑀𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  LModclmod 13786  LSubSpclss 13851  LSpanclspn 13885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788  df-lssm 13852  df-lsp 13886
This theorem is referenced by:  lss0v  13929
  Copyright terms: Public domain W3C validator