Proof of Theorem lsslsp
Step | Hyp | Ref
| Expression |
1 | | lsslsp.x |
. . . . 5
⊢ 𝑋 = (𝑊 ↾s 𝑈) |
2 | | lsslsp.l |
. . . . 5
⊢ 𝐿 = (LSubSp‘𝑊) |
3 | 1, 2 | lsslmod 13696 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
4 | 3 | 3adant3 1019 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 ∈ LMod) |
5 | | simp1 999 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑊 ∈ LMod) |
6 | | simp3 1001 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ 𝑈) |
7 | | eqid 2189 |
. . . . . . . 8
⊢
(Base‘𝑊) =
(Base‘𝑊) |
8 | 7, 2 | lssssg 13676 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑈 ⊆ (Base‘𝑊)) |
9 | 8 | 3adant3 1019 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝑊)) |
10 | 6, 9 | sstrd 3180 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑊)) |
11 | | lsslsp.m |
. . . . . 6
⊢ 𝑀 = (LSpan‘𝑊) |
12 | 7, 2, 11 | lspcl 13707 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀‘𝐺) ∈ 𝐿) |
13 | 5, 10, 12 | syl2anc 411 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ 𝐿) |
14 | 2, 11 | lspssp 13719 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ 𝑈) |
15 | | eqid 2189 |
. . . . . 6
⊢
(LSubSp‘𝑋) =
(LSubSp‘𝑋) |
16 | 1, 2, 15 | lsslss 13697 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
17 | 16 | 3adant3 1019 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) |
18 | 13, 14, 17 | mpbir2and 946 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ (LSubSp‘𝑋)) |
19 | 7, 11 | lspssid 13716 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀‘𝐺)) |
20 | 5, 10, 19 | syl2anc 411 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑀‘𝐺)) |
21 | | lsslsp.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑋) |
22 | 15, 21 | lspssp 13719 |
. . 3
⊢ ((𝑋 ∈ LMod ∧ (𝑀‘𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀‘𝐺)) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
23 | 4, 18, 20, 22 | syl3anc 1249 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) |
24 | 1 | a1i 9 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 = (𝑊 ↾s 𝑈)) |
25 | | eqidd 2190 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (Base‘𝑊) = (Base‘𝑊)) |
26 | 24, 25, 5, 9 | ressbas2d 12580 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 = (Base‘𝑋)) |
27 | 6, 26 | sseqtrd 3208 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑋)) |
28 | | eqid 2189 |
. . . . . . 7
⊢
(Base‘𝑋) =
(Base‘𝑋) |
29 | 28, 15, 21 | lspcl 13707 |
. . . . . 6
⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
30 | 4, 27, 29 | syl2anc 411 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) |
31 | 1, 2, 15 | lsslss 13697 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
32 | 31 | 3adant3 1019 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) |
33 | 30, 32 | mpbid 147 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈)) |
34 | 33 | simpld 112 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ 𝐿) |
35 | 28, 21 | lspssid 13716 |
. . . 4
⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁‘𝐺)) |
36 | 4, 27, 35 | syl2anc 411 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑁‘𝐺)) |
37 | 2, 11 | lspssp 13719 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐺) ∈ 𝐿 ∧ 𝐺 ⊆ (𝑁‘𝐺)) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
38 | 5, 34, 36, 37 | syl3anc 1249 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) |
39 | 23, 38 | eqssd 3187 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) |