Proof of Theorem lsslsp
| Step | Hyp | Ref
 | Expression | 
| 1 |   | lsslsp.x | 
. . . . 5
⊢ 𝑋 = (𝑊 ↾s 𝑈) | 
| 2 |   | lsslsp.l | 
. . . . 5
⊢ 𝐿 = (LSubSp‘𝑊) | 
| 3 | 1, 2 | lsslmod 13936 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) | 
| 4 | 3 | 3adant3 1019 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 ∈ LMod) | 
| 5 |   | simp1 999 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑊 ∈ LMod) | 
| 6 |   | simp3 1001 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ 𝑈) | 
| 7 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 8 | 7, 2 | lssssg 13916 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑈 ⊆ (Base‘𝑊)) | 
| 9 | 8 | 3adant3 1019 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝑊)) | 
| 10 | 6, 9 | sstrd 3193 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑊)) | 
| 11 |   | lsslsp.m | 
. . . . . 6
⊢ 𝑀 = (LSpan‘𝑊) | 
| 12 | 7, 2, 11 | lspcl 13947 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → (𝑀‘𝐺) ∈ 𝐿) | 
| 13 | 5, 10, 12 | syl2anc 411 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ 𝐿) | 
| 14 | 2, 11 | lspssp 13959 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ 𝑈) | 
| 15 |   | eqid 2196 | 
. . . . . 6
⊢
(LSubSp‘𝑋) =
(LSubSp‘𝑋) | 
| 16 | 1, 2, 15 | lsslss 13937 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) | 
| 17 | 16 | 3adant3 1019 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑀‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑀‘𝐺) ∈ 𝐿 ∧ (𝑀‘𝐺) ⊆ 𝑈))) | 
| 18 | 13, 14, 17 | mpbir2and 946 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ∈ (LSubSp‘𝑋)) | 
| 19 | 7, 11 | lspssid 13956 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑊)) → 𝐺 ⊆ (𝑀‘𝐺)) | 
| 20 | 5, 10, 19 | syl2anc 411 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑀‘𝐺)) | 
| 21 |   | lsslsp.n | 
. . . 4
⊢ 𝑁 = (LSpan‘𝑋) | 
| 22 | 15, 21 | lspssp 13959 | 
. . 3
⊢ ((𝑋 ∈ LMod ∧ (𝑀‘𝐺) ∈ (LSubSp‘𝑋) ∧ 𝐺 ⊆ (𝑀‘𝐺)) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) | 
| 23 | 4, 18, 20, 22 | syl3anc 1249 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ⊆ (𝑀‘𝐺)) | 
| 24 | 1 | a1i 9 | 
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑋 = (𝑊 ↾s 𝑈)) | 
| 25 |   | eqidd 2197 | 
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (Base‘𝑊) = (Base‘𝑊)) | 
| 26 | 24, 25, 5, 9 | ressbas2d 12746 | 
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝑈 = (Base‘𝑋)) | 
| 27 | 6, 26 | sseqtrd 3221 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (Base‘𝑋)) | 
| 28 |   | eqid 2196 | 
. . . . . . 7
⊢
(Base‘𝑋) =
(Base‘𝑋) | 
| 29 | 28, 15, 21 | lspcl 13947 | 
. . . . . 6
⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) | 
| 30 | 4, 27, 29 | syl2anc 411 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ (LSubSp‘𝑋)) | 
| 31 | 1, 2, 15 | lsslss 13937 | 
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) | 
| 32 | 31 | 3adant3 1019 | 
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ (LSubSp‘𝑋) ↔ ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈))) | 
| 33 | 30, 32 | mpbid 147 | 
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → ((𝑁‘𝐺) ∈ 𝐿 ∧ (𝑁‘𝐺) ⊆ 𝑈)) | 
| 34 | 33 | simpld 112 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) ∈ 𝐿) | 
| 35 | 28, 21 | lspssid 13956 | 
. . . 4
⊢ ((𝑋 ∈ LMod ∧ 𝐺 ⊆ (Base‘𝑋)) → 𝐺 ⊆ (𝑁‘𝐺)) | 
| 36 | 4, 27, 35 | syl2anc 411 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → 𝐺 ⊆ (𝑁‘𝐺)) | 
| 37 | 2, 11 | lspssp 13959 | 
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝐺) ∈ 𝐿 ∧ 𝐺 ⊆ (𝑁‘𝐺)) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) | 
| 38 | 5, 34, 36, 37 | syl3anc 1249 | 
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑀‘𝐺) ⊆ (𝑁‘𝐺)) | 
| 39 | 23, 38 | eqssd 3200 | 
1
⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈) → (𝑁‘𝐺) = (𝑀‘𝐺)) |