ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgugrp GIF version

Theorem subrgugrp 13872
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . . 4 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . 4 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . 4 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 13868 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
5 subrgrcl 13858 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
62a1i 9 . . . . 5 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
7 subrgugrp.4 . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
87a1i 9 . . . . 5 (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
9 ringsrg 13679 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
106, 8, 9unitgrpbasd 13747 . . . 4 (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺))
115, 10syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Base‘𝐺))
124, 11sseqtrd 3222 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ (Base‘𝐺))
131subrgring 13856 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
14 eqid 2196 . . . 4 (1r𝑆) = (1r𝑆)
153, 141unit 13739 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
16 elex2 2779 . . 3 ((1r𝑆) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1713, 15, 163syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∃𝑤 𝑤𝑉)
18 eqid 2196 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
191, 18ressmulrg 12847 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
205, 19mpdan 421 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
21203ad2ant1 1020 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
2221oveqd 5942 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
23 eqid 2196 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
243, 23unitmulcl 13745 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
2513, 24syl3an1 1282 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
2622, 25eqeltrd 2273 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
27263expa 1205 . . . . . 6 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
2827ralrimiva 2570 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
29 eqid 2196 . . . . . . 7 (invr𝑅) = (invr𝑅)
30 eqid 2196 . . . . . . 7 (invr𝑆) = (invr𝑆)
311, 29, 3, 30subrginv 13869 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
323, 30unitinvcl 13755 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
3313, 32sylan 283 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
3431, 33eqeltrd 2273 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
3528, 34jca 306 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
3635ralrimiva 2570 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
37 eqid 2196 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3837, 18mgpplusgg 13556 . . . . . . . . . 10 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
39 basfn 12761 . . . . . . . . . . . 12 Base Fn V
40 elex 2774 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ V)
41 funfvex 5578 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
4241funfni 5361 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
4339, 40, 42sylancr 414 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
44 eqidd 2197 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
4544, 6, 9unitssd 13741 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
4643, 45ssexd 4174 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑈 ∈ V)
4737ringmgp 13634 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
488, 38, 46, 47ressplusgd 12831 . . . . . . . . 9 (𝑅 ∈ Ring → (.r𝑅) = (+g𝐺))
495, 48syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (+g𝐺))
5049oveqd 5942 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑦) = (𝑥(+g𝐺)𝑦))
5150eleq1d 2265 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑦) ∈ 𝑉 ↔ (𝑥(+g𝐺)𝑦) ∈ 𝑉))
5251ralbidv 2497 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ↔ ∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉))
532a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
547a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
55 eqidd 2197 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (invr𝑅) = (invr𝑅))
5653, 54, 55, 5invrfvald 13754 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (invr𝑅) = (invg𝐺))
5756fveq1d 5563 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → ((invr𝑅)‘𝑥) = ((invg𝐺)‘𝑥))
5857eleq1d 2265 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (((invr𝑅)‘𝑥) ∈ 𝑉 ↔ ((invg𝐺)‘𝑥) ∈ 𝑉))
5952, 58anbi12d 473 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉) ↔ (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉)))
6059ralbidv 2497 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉) ↔ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉)))
6136, 60mpbid 147 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))
622, 7unitgrp 13748 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
63 eqid 2196 . . . 4 (Base‘𝐺) = (Base‘𝐺)
64 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
65 eqid 2196 . . . 4 (invg𝐺) = (invg𝐺)
6663, 64, 65issubg2m 13395 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑉 ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))))
675, 62, 663syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑉 ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))))
6812, 17, 61, 67mpbir3and 1182 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157   Fn wfn 5254  cfv 5259  (class class class)co 5925  Basecbs 12703  s cress 12704  +gcplusg 12780  .rcmulr 12781  Mndcmnd 13118  Grpcgrp 13202  invgcminusg 13203  SubGrpcsubg 13373  mulGrpcmgp 13552  1rcur 13591  Ringcrg 13628  Unitcui 13719  invrcinvr 13752  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-subrg 13851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator