ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgugrp GIF version

Theorem subrgugrp 13796
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . . 4 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . 4 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . 4 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 13792 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
5 subrgrcl 13782 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
62a1i 9 . . . . 5 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
7 subrgugrp.4 . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
87a1i 9 . . . . 5 (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
9 ringsrg 13603 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
106, 8, 9unitgrpbasd 13671 . . . 4 (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺))
115, 10syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Base‘𝐺))
124, 11sseqtrd 3221 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ (Base‘𝐺))
131subrgring 13780 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
14 eqid 2196 . . . 4 (1r𝑆) = (1r𝑆)
153, 141unit 13663 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
16 elex2 2779 . . 3 ((1r𝑆) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1713, 15, 163syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∃𝑤 𝑤𝑉)
18 eqid 2196 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
191, 18ressmulrg 12822 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
205, 19mpdan 421 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
21203ad2ant1 1020 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
2221oveqd 5939 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
23 eqid 2196 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
243, 23unitmulcl 13669 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
2513, 24syl3an1 1282 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
2622, 25eqeltrd 2273 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
27263expa 1205 . . . . . 6 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
2827ralrimiva 2570 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
29 eqid 2196 . . . . . . 7 (invr𝑅) = (invr𝑅)
30 eqid 2196 . . . . . . 7 (invr𝑆) = (invr𝑆)
311, 29, 3, 30subrginv 13793 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
323, 30unitinvcl 13679 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
3313, 32sylan 283 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
3431, 33eqeltrd 2273 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
3528, 34jca 306 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
3635ralrimiva 2570 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
37 eqid 2196 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3837, 18mgpplusgg 13480 . . . . . . . . . 10 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
39 basfn 12736 . . . . . . . . . . . 12 Base Fn V
40 elex 2774 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ V)
41 funfvex 5575 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
4241funfni 5358 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
4339, 40, 42sylancr 414 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
44 eqidd 2197 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
4544, 6, 9unitssd 13665 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
4643, 45ssexd 4173 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑈 ∈ V)
4737ringmgp 13558 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
488, 38, 46, 47ressplusgd 12806 . . . . . . . . 9 (𝑅 ∈ Ring → (.r𝑅) = (+g𝐺))
495, 48syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (+g𝐺))
5049oveqd 5939 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑦) = (𝑥(+g𝐺)𝑦))
5150eleq1d 2265 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑦) ∈ 𝑉 ↔ (𝑥(+g𝐺)𝑦) ∈ 𝑉))
5251ralbidv 2497 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ↔ ∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉))
532a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
547a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
55 eqidd 2197 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (invr𝑅) = (invr𝑅))
5653, 54, 55, 5invrfvald 13678 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (invr𝑅) = (invg𝐺))
5756fveq1d 5560 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → ((invr𝑅)‘𝑥) = ((invg𝐺)‘𝑥))
5857eleq1d 2265 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (((invr𝑅)‘𝑥) ∈ 𝑉 ↔ ((invg𝐺)‘𝑥) ∈ 𝑉))
5952, 58anbi12d 473 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉) ↔ (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉)))
6059ralbidv 2497 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉) ↔ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉)))
6136, 60mpbid 147 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))
622, 7unitgrp 13672 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
63 eqid 2196 . . . 4 (Base‘𝐺) = (Base‘𝐺)
64 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
65 eqid 2196 . . . 4 (invg𝐺) = (invg𝐺)
6663, 64, 65issubg2m 13319 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑉 ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))))
675, 62, 663syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑉 ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))))
6812, 17, 61, 67mpbir3and 1182 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157   Fn wfn 5253  cfv 5258  (class class class)co 5922  Basecbs 12678  s cress 12679  +gcplusg 12755  .rcmulr 12756  Mndcmnd 13057  Grpcgrp 13132  invgcminusg 13133  SubGrpcsubg 13297  mulGrpcmgp 13476  1rcur 13515  Ringcrg 13552  Unitcui 13643  invrcinvr 13676  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-invr 13677  df-subrg 13775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator