| Step | Hyp | Ref
 | Expression | 
| 1 |   | subrgugrp.1 | 
. . . 4
⊢ 𝑆 = (𝑅 ↾s 𝐴) | 
| 2 |   | subrgugrp.2 | 
. . . 4
⊢ 𝑈 = (Unit‘𝑅) | 
| 3 |   | subrgugrp.3 | 
. . . 4
⊢ 𝑉 = (Unit‘𝑆) | 
| 4 | 1, 2, 3 | subrguss 13792 | 
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) | 
| 5 |   | subrgrcl 13782 | 
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | 
| 6 | 2 | a1i 9 | 
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) | 
| 7 |   | subrgugrp.4 | 
. . . . . 6
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) | 
| 8 | 7 | a1i 9 | 
. . . . 5
⊢ (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | 
| 9 |   | ringsrg 13603 | 
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | 
| 10 | 6, 8, 9 | unitgrpbasd 13671 | 
. . . 4
⊢ (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺)) | 
| 11 | 5, 10 | syl 14 | 
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Base‘𝐺)) | 
| 12 | 4, 11 | sseqtrd 3221 | 
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ (Base‘𝐺)) | 
| 13 | 1 | subrgring 13780 | 
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | 
| 14 |   | eqid 2196 | 
. . . 4
⊢
(1r‘𝑆) = (1r‘𝑆) | 
| 15 | 3, 14 | 1unit 13663 | 
. . 3
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝑉) | 
| 16 |   | elex2 2779 | 
. . 3
⊢
((1r‘𝑆) ∈ 𝑉 → ∃𝑤 𝑤 ∈ 𝑉) | 
| 17 | 13, 15, 16 | 3syl 17 | 
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∃𝑤 𝑤 ∈ 𝑉) | 
| 18 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 19 | 1, 18 | ressmulrg 12822 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) | 
| 20 | 5, 19 | mpdan 421 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) | 
| 21 | 20 | 3ad2ant1 1020 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) | 
| 22 | 21 | oveqd 5939 | 
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) | 
| 23 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(.r‘𝑆) = (.r‘𝑆) | 
| 24 | 3, 23 | unitmulcl 13669 | 
. . . . . . . . 9
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) | 
| 25 | 13, 24 | syl3an1 1282 | 
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) | 
| 26 | 22, 25 | eqeltrd 2273 | 
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) | 
| 27 | 26 | 3expa 1205 | 
. . . . . 6
⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) | 
| 28 | 27 | ralrimiva 2570 | 
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) | 
| 29 |   | eqid 2196 | 
. . . . . . 7
⊢
(invr‘𝑅) = (invr‘𝑅) | 
| 30 |   | eqid 2196 | 
. . . . . . 7
⊢
(invr‘𝑆) = (invr‘𝑆) | 
| 31 | 1, 29, 3, 30 | subrginv 13793 | 
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) | 
| 32 | 3, 30 | unitinvcl 13679 | 
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) | 
| 33 | 13, 32 | sylan 283 | 
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) | 
| 34 | 31, 33 | eqeltrd 2273 | 
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) | 
| 35 | 28, 34 | jca 306 | 
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) | 
| 36 | 35 | ralrimiva 2570 | 
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) | 
| 37 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 38 | 37, 18 | mgpplusgg 13480 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) | 
| 39 |   | basfn 12736 | 
. . . . . . . . . . . 12
⊢ Base Fn
V | 
| 40 |   | elex 2774 | 
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | 
| 41 |   | funfvex 5575 | 
. . . . . . . . . . . . 13
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 42 | 41 | funfni 5358 | 
. . . . . . . . . . . 12
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 43 | 39, 40, 42 | sylancr 414 | 
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) ∈
V) | 
| 44 |   | eqidd 2197 | 
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑅)) | 
| 45 | 44, 6, 9 | unitssd 13665 | 
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) | 
| 46 | 43, 45 | ssexd 4173 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑈 ∈ V) | 
| 47 | 37 | ringmgp 13558 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) | 
| 48 | 8, 38, 46, 47 | ressplusgd 12806 | 
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(+g‘𝐺)) | 
| 49 | 5, 48 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(+g‘𝐺)) | 
| 50 | 49 | oveqd 5939 | 
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r‘𝑅)𝑦) = (𝑥(+g‘𝐺)𝑦)) | 
| 51 | 50 | eleq1d 2265 | 
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ↔ (𝑥(+g‘𝐺)𝑦) ∈ 𝑉)) | 
| 52 | 51 | ralbidv 2497 | 
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ↔ ∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉)) | 
| 53 | 2 | a1i 9 | 
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅)) | 
| 54 | 7 | a1i 9 | 
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | 
| 55 |   | eqidd 2197 | 
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(invr‘𝑅) =
(invr‘𝑅)) | 
| 56 | 53, 54, 55, 5 | invrfvald 13678 | 
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(invr‘𝑅) =
(invg‘𝐺)) | 
| 57 | 56 | fveq1d 5560 | 
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
((invr‘𝑅)‘𝑥) = ((invg‘𝐺)‘𝑥)) | 
| 58 | 57 | eleq1d 2265 | 
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(((invr‘𝑅)‘𝑥) ∈ 𝑉 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑉)) | 
| 59 | 52, 58 | anbi12d 473 | 
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → ((∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉) ↔ (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉))) | 
| 60 | 59 | ralbidv 2497 | 
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉) ↔ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉))) | 
| 61 | 36, 60 | mpbid 147 | 
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉)) | 
| 62 | 2, 7 | unitgrp 13672 | 
. . 3
⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) | 
| 63 |   | eqid 2196 | 
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 64 |   | eqid 2196 | 
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 65 |   | eqid 2196 | 
. . . 4
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 66 | 63, 64, 65 | issubg2m 13319 | 
. . 3
⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉)))) | 
| 67 | 5, 62, 66 | 3syl 17 | 
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉)))) | 
| 68 | 12, 17, 61, 67 | mpbir3and 1182 | 
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |