ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgugrp GIF version

Theorem subrgugrp 13944
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . . 4 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . 4 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . 4 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 13940 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
5 subrgrcl 13930 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
62a1i 9 . . . . 5 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
7 subrgugrp.4 . . . . . 6 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
87a1i 9 . . . . 5 (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
9 ringsrg 13751 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
106, 8, 9unitgrpbasd 13819 . . . 4 (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺))
115, 10syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Base‘𝐺))
124, 11sseqtrd 3230 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ (Base‘𝐺))
131subrgring 13928 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
14 eqid 2204 . . . 4 (1r𝑆) = (1r𝑆)
153, 141unit 13811 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
16 elex2 2787 . . 3 ((1r𝑆) ∈ 𝑉 → ∃𝑤 𝑤𝑉)
1713, 15, 163syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∃𝑤 𝑤𝑉)
18 eqid 2204 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
191, 18ressmulrg 12919 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
205, 19mpdan 421 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
21203ad2ant1 1020 . . . . . . . . 9 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
2221oveqd 5960 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
23 eqid 2204 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
243, 23unitmulcl 13817 . . . . . . . . 9 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
2513, 24syl3an1 1282 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
2622, 25eqeltrd 2281 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
27263expa 1205 . . . . . 6 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
2827ralrimiva 2578 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
29 eqid 2204 . . . . . . 7 (invr𝑅) = (invr𝑅)
30 eqid 2204 . . . . . . 7 (invr𝑆) = (invr𝑆)
311, 29, 3, 30subrginv 13941 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
323, 30unitinvcl 13827 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
3313, 32sylan 283 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
3431, 33eqeltrd 2281 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
3528, 34jca 306 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
3635ralrimiva 2578 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
37 eqid 2204 . . . . . . . . . . 11 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3837, 18mgpplusgg 13628 . . . . . . . . . 10 (𝑅 ∈ Ring → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
39 basfn 12832 . . . . . . . . . . . 12 Base Fn V
40 elex 2782 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ V)
41 funfvex 5592 . . . . . . . . . . . . 13 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
4241funfni 5375 . . . . . . . . . . . 12 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
4339, 40, 42sylancr 414 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
44 eqidd 2205 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑅))
4544, 6, 9unitssd 13813 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅))
4643, 45ssexd 4183 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑈 ∈ V)
4737ringmgp 13706 . . . . . . . . . 10 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
488, 38, 46, 47ressplusgd 12903 . . . . . . . . 9 (𝑅 ∈ Ring → (.r𝑅) = (+g𝐺))
495, 48syl 14 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (+g𝐺))
5049oveqd 5960 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)𝑦) = (𝑥(+g𝐺)𝑦))
5150eleq1d 2273 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)𝑦) ∈ 𝑉 ↔ (𝑥(+g𝐺)𝑦) ∈ 𝑉))
5251ralbidv 2505 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ↔ ∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉))
532a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅))
547a1i 9 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))
55 eqidd 2205 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (invr𝑅) = (invr𝑅))
5653, 54, 55, 5invrfvald 13826 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (invr𝑅) = (invg𝐺))
5756fveq1d 5577 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → ((invr𝑅)‘𝑥) = ((invg𝐺)‘𝑥))
5857eleq1d 2273 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (((invr𝑅)‘𝑥) ∈ 𝑉 ↔ ((invg𝐺)‘𝑥) ∈ 𝑉))
5952, 58anbi12d 473 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉) ↔ (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉)))
6059ralbidv 2505 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉) ↔ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉)))
6136, 60mpbid 147 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))
622, 7unitgrp 13820 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
63 eqid 2204 . . . 4 (Base‘𝐺) = (Base‘𝐺)
64 eqid 2204 . . . 4 (+g𝐺) = (+g𝐺)
65 eqid 2204 . . . 4 (invg𝐺) = (invg𝐺)
6663, 64, 65issubg2m 13467 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑉 ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))))
675, 62, 663syl 17 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤𝑉 ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(+g𝐺)𝑦) ∈ 𝑉 ∧ ((invg𝐺)‘𝑥) ∈ 𝑉))))
6812, 17, 61, 67mpbir3and 1182 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wex 1514  wcel 2175  wral 2483  Vcvv 2771  wss 3165   Fn wfn 5265  cfv 5270  (class class class)co 5943  Basecbs 12774  s cress 12775  +gcplusg 12851  .rcmulr 12852  Mndcmnd 13190  Grpcgrp 13274  invgcminusg 13275  SubGrpcsubg 13445  mulGrpcmgp 13624  1rcur 13663  Ringcrg 13700  Unitcui 13791  invrcinvr 13824  SubRingcsubrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-subg 13448  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-dvdsr 13793  df-unit 13794  df-invr 13825  df-subrg 13923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator