| Step | Hyp | Ref
| Expression |
| 1 | | subrgugrp.1 |
. . . 4
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| 2 | | subrgugrp.2 |
. . . 4
⊢ 𝑈 = (Unit‘𝑅) |
| 3 | | subrgugrp.3 |
. . . 4
⊢ 𝑉 = (Unit‘𝑆) |
| 4 | 1, 2, 3 | subrguss 13868 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ 𝑈) |
| 5 | | subrgrcl 13858 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
| 6 | 2 | a1i 9 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 7 | | subrgugrp.4 |
. . . . . 6
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) |
| 8 | 7 | a1i 9 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 9 | | ringsrg 13679 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 10 | 6, 8, 9 | unitgrpbasd 13747 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑈 = (Base‘𝐺)) |
| 11 | 5, 10 | syl 14 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Base‘𝐺)) |
| 12 | 4, 11 | sseqtrd 3222 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ⊆ (Base‘𝐺)) |
| 13 | 1 | subrgring 13856 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| 14 | | eqid 2196 |
. . . 4
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 15 | 3, 14 | 1unit 13739 |
. . 3
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝑉) |
| 16 | | elex2 2779 |
. . 3
⊢
((1r‘𝑆) ∈ 𝑉 → ∃𝑤 𝑤 ∈ 𝑉) |
| 17 | 13, 15, 16 | 3syl 17 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∃𝑤 𝑤 ∈ 𝑉) |
| 18 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 19 | 1, 18 | ressmulrg 12847 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 20 | 5, 19 | mpdan 421 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
| 21 | 20 | 3ad2ant1 1020 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (.r‘𝑅) = (.r‘𝑆)) |
| 22 | 21 | oveqd 5942 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘𝑆)𝑦)) |
| 23 | | eqid 2196 |
. . . . . . . . . 10
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 24 | 3, 23 | unitmulcl 13745 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 25 | 13, 24 | syl3an1 1282 |
. . . . . . . 8
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑆)𝑦) ∈ 𝑉) |
| 26 | 22, 25 | eqeltrd 2273 |
. . . . . . 7
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 27 | 26 | 3expa 1205 |
. . . . . 6
⊢ (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 28 | 27 | ralrimiva 2570 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉) |
| 29 | | eqid 2196 |
. . . . . . 7
⊢
(invr‘𝑅) = (invr‘𝑅) |
| 30 | | eqid 2196 |
. . . . . . 7
⊢
(invr‘𝑆) = (invr‘𝑆) |
| 31 | 1, 29, 3, 30 | subrginv 13869 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) = ((invr‘𝑆)‘𝑥)) |
| 32 | 3, 30 | unitinvcl 13755 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 33 | 13, 32 | sylan 283 |
. . . . . 6
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑆)‘𝑥) ∈ 𝑉) |
| 34 | 31, 33 | eqeltrd 2273 |
. . . . 5
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → ((invr‘𝑅)‘𝑥) ∈ 𝑉) |
| 35 | 28, 34 | jca 306 |
. . . 4
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ 𝑉) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 36 | 35 | ralrimiva 2570 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉)) |
| 37 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 38 | 37, 18 | mgpplusgg 13556 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
| 39 | | basfn 12761 |
. . . . . . . . . . . 12
⊢ Base Fn
V |
| 40 | | elex 2774 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) |
| 41 | | funfvex 5578 |
. . . . . . . . . . . . 13
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 42 | 41 | funfni 5361 |
. . . . . . . . . . . 12
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 43 | 39, 40, 42 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) ∈
V) |
| 44 | | eqidd 2197 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑅)) |
| 45 | 44, 6, 9 | unitssd 13741 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑈 ⊆ (Base‘𝑅)) |
| 46 | 43, 45 | ssexd 4174 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑈 ∈ V) |
| 47 | 37 | ringmgp 13634 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 48 | 8, 38, 46, 47 | ressplusgd 12831 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(+g‘𝐺)) |
| 49 | 5, 48 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(+g‘𝐺)) |
| 50 | 49 | oveqd 5942 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r‘𝑅)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 51 | 50 | eleq1d 2265 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ↔ (𝑥(+g‘𝐺)𝑦) ∈ 𝑉)) |
| 52 | 51 | ralbidv 2497 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ↔ ∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉)) |
| 53 | 2 | a1i 9 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑈 = (Unit‘𝑅)) |
| 54 | 7 | a1i 9 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 55 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(invr‘𝑅) =
(invr‘𝑅)) |
| 56 | 53, 54, 55, 5 | invrfvald 13754 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(invr‘𝑅) =
(invg‘𝐺)) |
| 57 | 56 | fveq1d 5563 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) →
((invr‘𝑅)‘𝑥) = ((invg‘𝐺)‘𝑥)) |
| 58 | 57 | eleq1d 2265 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(((invr‘𝑅)‘𝑥) ∈ 𝑉 ↔ ((invg‘𝐺)‘𝑥) ∈ 𝑉)) |
| 59 | 52, 58 | anbi12d 473 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → ((∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉) ↔ (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉))) |
| 60 | 59 | ralbidv 2497 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(.r‘𝑅)𝑦) ∈ 𝑉 ∧ ((invr‘𝑅)‘𝑥) ∈ 𝑉) ↔ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉))) |
| 61 | 36, 60 | mpbid 147 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉)) |
| 62 | 2, 7 | unitgrp 13748 |
. . 3
⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| 63 | | eqid 2196 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 64 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 65 | | eqid 2196 |
. . . 4
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 66 | 63, 64, 65 | issubg2m 13395 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉)))) |
| 67 | 5, 62, 66 | 3syl 17 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉 ⊆ (Base‘𝐺) ∧ ∃𝑤 𝑤 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑉 (∀𝑦 ∈ 𝑉 (𝑥(+g‘𝐺)𝑦) ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑥) ∈ 𝑉)))) |
| 68 | 12, 17, 61, 67 | mpbir3and 1182 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺)) |