![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clsss2 | GIF version |
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss2 | ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 12114 | . . . 4 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | 1 | adantr 272 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝐽 ∈ Top) |
3 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | cldss 12117 | . . . 4 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ 𝑋) |
5 | 4 | adantr 272 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝐶 ⊆ 𝑋) |
6 | simpr 109 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ⊆ 𝐶) | |
7 | 3 | clsss 12130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶)) |
8 | 2, 5, 6, 7 | syl3anc 1199 | . 2 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶)) |
9 | cldcls 12126 | . . 3 ⊢ (𝐶 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐶) = 𝐶) | |
10 | 9 | adantr 272 | . 2 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝐶) = 𝐶) |
11 | 8, 10 | sseqtrd 3101 | 1 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ⊆ wss 3037 ∪ cuni 3702 ‘cfv 5081 Topctop 12007 Clsdccld 12104 clsccl 12106 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-top 12008 df-cld 12107 df-cls 12109 |
This theorem is referenced by: clsss3 12142 |
Copyright terms: Public domain | W3C validator |