![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trivsubgd | GIF version |
Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
trivsubgd.1 | ⊢ 𝐵 = (Base‘𝐺) |
trivsubgd.2 | ⊢ 0 = (0g‘𝐺) |
trivsubgd.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
trivsubgd.4 | ⊢ (𝜑 → 𝐵 = { 0 }) |
trivsubgd.5 | ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) |
Ref | Expression |
---|---|
trivsubgd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trivsubgd.5 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) | |
2 | trivsubgd.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 2 | subgss 13040 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ 𝐵) |
4 | 1, 3 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
5 | trivsubgd.4 | . . . 4 ⊢ (𝜑 → 𝐵 = { 0 }) | |
6 | 4, 5 | sseqtrd 3195 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ { 0 }) |
7 | trivsubgd.2 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | 7 | subg0cl 13048 | . . . . 5 ⊢ (𝐴 ∈ (SubGrp‘𝐺) → 0 ∈ 𝐴) |
9 | 1, 8 | syl 14 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝐴) |
10 | 9 | snssd 3739 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝐴) |
11 | 6, 10 | eqssd 3174 | . 2 ⊢ (𝜑 → 𝐴 = { 0 }) |
12 | 11, 5 | eqtr4d 2213 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 {csn 3594 ‘cfv 5218 Basecbs 12465 0gc0g 12711 Grpcgrp 12883 SubGrpcsubg 13033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-subg 13036 |
This theorem is referenced by: trivsubgsnd 13067 |
Copyright terms: Public domain | W3C validator |