ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvbss GIF version

Theorem dvbss 12609
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s (𝜑𝑆 ⊆ ℂ)
dvcl.f (𝜑𝐹:𝐴⟶ℂ)
dvcl.a (𝜑𝐴𝑆)
Assertion
Ref Expression
dvbss (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)

Proof of Theorem dvbss
StepHypRef Expression
1 dvcl.s . . 3 (𝜑𝑆 ⊆ ℂ)
2 dvcl.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 dvcl.a . . 3 (𝜑𝐴𝑆)
4 eqid 2115 . . 3 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
5 eqid 2115 . . 3 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
61, 2, 3, 4, 5dvbssntrcntop 12608 . 2 (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴))
75cntoptop 12522 . . . 4 (MetOpen‘(abs ∘ − )) ∈ Top
8 cnex 7668 . . . . 5 ℂ ∈ V
9 ssexg 4027 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
101, 8, 9sylancl 407 . . . 4 (𝜑𝑆 ∈ V)
11 resttop 12182 . . . 4 (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
127, 10, 11sylancr 408 . . 3 (𝜑 → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top)
135cntoptopon 12521 . . . . . 6 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
14 resttopon 12183 . . . . . 6 (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆))
1513, 1, 14sylancr 408 . . . . 5 (𝜑 → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆))
16 toponuni 12025 . . . . 5 (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
1715, 16syl 14 . . . 4 (𝜑𝑆 = ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
183, 17sseqtrd 3101 . . 3 (𝜑𝐴 ((MetOpen‘(abs ∘ − )) ↾t 𝑆))
19 eqid 2115 . . . 4 ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆)
2019ntrss2 12133 . . 3 ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ 𝐴 ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
2112, 18, 20syl2anc 406 . 2 (𝜑 → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ⊆ 𝐴)
226, 21sstrd 3073 1 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  Vcvv 2657  wss 3037   cuni 3702  dom cdm 4499  ccom 4503  wf 5077  cfv 5081  (class class class)co 5728  cc 7545  cmin 7856  abscabs 10661  t crest 11963  MetOpencmopn 11997  Topctop 12007  TopOnctopon 12020  intcnt 12105   D cdv 12580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-map 6498  df-pm 6499  df-sup 6823  df-inf 6824  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-xneg 9452  df-xadd 9453  df-seqfrec 10112  df-exp 10186  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-rest 11965  df-topgen 11984  df-psmet 11999  df-xmet 12000  df-met 12001  df-bl 12002  df-mopn 12003  df-top 12008  df-topon 12021  df-bases 12053  df-ntr 12108  df-limced 12581  df-dvap 12582
This theorem is referenced by:  dvbsssg  12610  dvidlemap  12615  dviaddf  12624  dvimulf  12625
  Copyright terms: Public domain W3C validator