| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvbss | GIF version | ||
| Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| dvbss | ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
| 2 | dvcl.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 3 | dvcl.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
| 4 | eqid 2209 | . . 3 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆) | |
| 5 | eqid 2209 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 6 | 1, 2, 3, 4, 5 | dvbssntrcntop 15323 | . 2 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴)) |
| 7 | 5 | cntoptop 15172 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) ∈ Top |
| 8 | cnex 8091 | . . . . 5 ⊢ ℂ ∈ V | |
| 9 | ssexg 4202 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V) | |
| 10 | 1, 8, 9 | sylancl 413 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 11 | resttop 14809 | . . . 4 ⊢ (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) | |
| 12 | 7, 10, 11 | sylancr 414 | . . 3 ⊢ (𝜑 → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) |
| 13 | 5 | cntoptopon 15171 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) |
| 14 | resttopon 14810 | . . . . . 6 ⊢ (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
| 15 | 13, 1, 14 | sylancr 414 | . . . . 5 ⊢ (𝜑 → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
| 16 | toponuni 14654 | . . . . 5 ⊢ (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | |
| 17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑆 = ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
| 18 | 3, 17 | sseqtrd 3242 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
| 19 | eqid 2209 | . . . 4 ⊢ ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) | |
| 20 | 19 | ntrss2 14760 | . . 3 ⊢ ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ 𝐴 ⊆ ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
| 21 | 12, 18, 20 | syl2anc 411 | . 2 ⊢ (𝜑 → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
| 22 | 6, 21 | sstrd 3214 | 1 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 ∪ cuni 3867 dom cdm 4696 ∘ ccom 4700 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 − cmin 8285 abscabs 11474 ↾t crest 13238 MetOpencmopn 14470 Topctop 14636 TopOnctopon 14649 intcnt 14732 D cdv 15294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-map 6767 df-pm 6768 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-xneg 9936 df-xadd 9937 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-rest 13240 df-topgen 13259 df-psmet 14472 df-xmet 14473 df-met 14474 df-bl 14475 df-mopn 14476 df-top 14637 df-topon 14650 df-bases 14682 df-ntr 14735 df-limced 15295 df-dvap 15296 |
| This theorem is referenced by: dvbsssg 15325 dvidlemap 15330 dvidrelem 15331 dvidsslem 15332 dviaddf 15344 dvimulf 15345 dvcoapbr 15346 dvcjbr 15347 dvrecap 15352 |
| Copyright terms: Public domain | W3C validator |