![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvbss | GIF version |
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvcl.s | ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
dvcl.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
dvcl.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑆) |
Ref | Expression |
---|---|
dvbss | ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcl.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) | |
2 | dvcl.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
3 | dvcl.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑆) | |
4 | eqid 2115 | . . 3 ⊢ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ((MetOpen‘(abs ∘ − )) ↾t 𝑆) | |
5 | eqid 2115 | . . 3 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
6 | 1, 2, 3, 4, 5 | dvbssntrcntop 12608 | . 2 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴)) |
7 | 5 | cntoptop 12522 | . . . 4 ⊢ (MetOpen‘(abs ∘ − )) ∈ Top |
8 | cnex 7668 | . . . . 5 ⊢ ℂ ∈ V | |
9 | ssexg 4027 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V) | |
10 | 1, 8, 9 | sylancl 407 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
11 | resttop 12182 | . . . 4 ⊢ (((MetOpen‘(abs ∘ − )) ∈ Top ∧ 𝑆 ∈ V) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) | |
12 | 7, 10, 11 | sylancr 408 | . . 3 ⊢ (𝜑 → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top) |
13 | 5 | cntoptopon 12521 | . . . . . 6 ⊢ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) |
14 | resttopon 12183 | . . . . . 6 ⊢ (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) | |
15 | 13, 1, 14 | sylancr 408 | . . . . 5 ⊢ (𝜑 → ((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆)) |
16 | toponuni 12025 | . . . . 5 ⊢ (((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑆 = ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
18 | 3, 17 | sseqtrd 3101 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) |
19 | eqid 2115 | . . . 4 ⊢ ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) = ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆) | |
20 | 19 | ntrss2 12133 | . . 3 ⊢ ((((MetOpen‘(abs ∘ − )) ↾t 𝑆) ∈ Top ∧ 𝐴 ⊆ ∪ ((MetOpen‘(abs ∘ − )) ↾t 𝑆)) → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
21 | 12, 18, 20 | syl2anc 406 | . 2 ⊢ (𝜑 → ((int‘((MetOpen‘(abs ∘ − )) ↾t 𝑆))‘𝐴) ⊆ 𝐴) |
22 | 6, 21 | sstrd 3073 | 1 ⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ⊆ wss 3037 ∪ cuni 3702 dom cdm 4499 ∘ ccom 4503 ⟶wf 5077 ‘cfv 5081 (class class class)co 5728 ℂcc 7545 − cmin 7856 abscabs 10661 ↾t crest 11963 MetOpencmopn 11997 Topctop 12007 TopOnctopon 12020 intcnt 12105 D cdv 12580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 ax-caucvg 7665 |
This theorem depends on definitions: df-bi 116 df-stab 799 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-isom 5090 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-map 6498 df-pm 6499 df-sup 6823 df-inf 6824 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-n0 8882 df-z 8959 df-uz 9229 df-q 9314 df-rp 9344 df-xneg 9452 df-xadd 9453 df-seqfrec 10112 df-exp 10186 df-cj 10507 df-re 10508 df-im 10509 df-rsqrt 10662 df-abs 10663 df-rest 11965 df-topgen 11984 df-psmet 11999 df-xmet 12000 df-met 12001 df-bl 12002 df-mopn 12003 df-top 12008 df-topon 12021 df-bases 12053 df-ntr 12108 df-limced 12581 df-dvap 12582 |
This theorem is referenced by: dvbsssg 12610 dvidlemap 12615 dviaddf 12624 dvimulf 12625 |
Copyright terms: Public domain | W3C validator |