![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvbss | GIF version |
Description: The set of differentiable points is a subset of the domain of the function. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvcl.s | β’ (π β π β β) |
dvcl.f | β’ (π β πΉ:π΄βΆβ) |
dvcl.a | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
dvbss | β’ (π β dom (π D πΉ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcl.s | . . 3 β’ (π β π β β) | |
2 | dvcl.f | . . 3 β’ (π β πΉ:π΄βΆβ) | |
3 | dvcl.a | . . 3 β’ (π β π΄ β π) | |
4 | eqid 2177 | . . 3 β’ ((MetOpenβ(abs β β )) βΎt π) = ((MetOpenβ(abs β β )) βΎt π) | |
5 | eqid 2177 | . . 3 β’ (MetOpenβ(abs β β )) = (MetOpenβ(abs β β )) | |
6 | 1, 2, 3, 4, 5 | dvbssntrcntop 14156 | . 2 β’ (π β dom (π D πΉ) β ((intβ((MetOpenβ(abs β β )) βΎt π))βπ΄)) |
7 | 5 | cntoptop 14036 | . . . 4 β’ (MetOpenβ(abs β β )) β Top |
8 | cnex 7935 | . . . . 5 β’ β β V | |
9 | ssexg 4143 | . . . . 5 β’ ((π β β β§ β β V) β π β V) | |
10 | 1, 8, 9 | sylancl 413 | . . . 4 β’ (π β π β V) |
11 | resttop 13673 | . . . 4 β’ (((MetOpenβ(abs β β )) β Top β§ π β V) β ((MetOpenβ(abs β β )) βΎt π) β Top) | |
12 | 7, 10, 11 | sylancr 414 | . . 3 β’ (π β ((MetOpenβ(abs β β )) βΎt π) β Top) |
13 | 5 | cntoptopon 14035 | . . . . . 6 β’ (MetOpenβ(abs β β )) β (TopOnββ) |
14 | resttopon 13674 | . . . . . 6 β’ (((MetOpenβ(abs β β )) β (TopOnββ) β§ π β β) β ((MetOpenβ(abs β β )) βΎt π) β (TopOnβπ)) | |
15 | 13, 1, 14 | sylancr 414 | . . . . 5 β’ (π β ((MetOpenβ(abs β β )) βΎt π) β (TopOnβπ)) |
16 | toponuni 13518 | . . . . 5 β’ (((MetOpenβ(abs β β )) βΎt π) β (TopOnβπ) β π = βͺ ((MetOpenβ(abs β β )) βΎt π)) | |
17 | 15, 16 | syl 14 | . . . 4 β’ (π β π = βͺ ((MetOpenβ(abs β β )) βΎt π)) |
18 | 3, 17 | sseqtrd 3194 | . . 3 β’ (π β π΄ β βͺ ((MetOpenβ(abs β β )) βΎt π)) |
19 | eqid 2177 | . . . 4 β’ βͺ ((MetOpenβ(abs β β )) βΎt π) = βͺ ((MetOpenβ(abs β β )) βΎt π) | |
20 | 19 | ntrss2 13624 | . . 3 β’ ((((MetOpenβ(abs β β )) βΎt π) β Top β§ π΄ β βͺ ((MetOpenβ(abs β β )) βΎt π)) β ((intβ((MetOpenβ(abs β β )) βΎt π))βπ΄) β π΄) |
21 | 12, 18, 20 | syl2anc 411 | . 2 β’ (π β ((intβ((MetOpenβ(abs β β )) βΎt π))βπ΄) β π΄) |
22 | 6, 21 | sstrd 3166 | 1 β’ (π β dom (π D πΉ) β π΄) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2738 β wss 3130 βͺ cuni 3810 dom cdm 4627 β ccom 4631 βΆwf 5213 βcfv 5217 (class class class)co 5875 βcc 7809 β cmin 8128 abscabs 11006 βΎt crest 12688 MetOpencmopn 13448 Topctop 13500 TopOnctopon 13513 intcnt 13596 D cdv 14127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 ax-caucvg 7931 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-isom 5226 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-frec 6392 df-map 6650 df-pm 6651 df-sup 6983 df-inf 6984 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-n0 9177 df-z 9254 df-uz 9529 df-q 9620 df-rp 9654 df-xneg 9772 df-xadd 9773 df-seqfrec 10446 df-exp 10520 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 df-rest 12690 df-topgen 12709 df-psmet 13450 df-xmet 13451 df-met 13452 df-bl 13453 df-mopn 13454 df-top 13501 df-topon 13514 df-bases 13546 df-ntr 13599 df-limced 14128 df-dvap 14129 |
This theorem is referenced by: dvbsssg 14158 dvidlemap 14163 dviaddf 14172 dvimulf 14173 dvcoapbr 14174 dvcjbr 14175 dvrecap 14180 |
Copyright terms: Public domain | W3C validator |