ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn2 GIF version

Theorem uztrn2 9474
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
uztrn2.1 𝑍 = (ℤ𝐾)
Assertion
Ref Expression
uztrn2 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)

Proof of Theorem uztrn2
StepHypRef Expression
1 uztrn2.1 . . . 4 𝑍 = (ℤ𝐾)
21eleq2i 2231 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝐾))
3 uztrn 9473 . . . 4 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑀 ∈ (ℤ𝐾))
43ancoms 266 . . 3 ((𝑁 ∈ (ℤ𝐾) ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝐾))
52, 4sylanb 282 . 2 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝐾))
65, 1eleqtrrdi 2258 1 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  cfv 5182  cuz 9457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-pre-ltwlin 7857
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-neg 8063  df-z 9183  df-uz 9458
This theorem is referenced by:  eluznn0  9528  eluznn  9529  elfzuz2  9954  rexuz3  10918  r19.29uz  10920  r19.2uz  10921  clim2  11210  clim2c  11211  clim0c  11213  2clim  11228  climabs0  11234  climcn1  11235  climcn2  11236  climsqz  11262  climsqz2  11263  clim2ser  11264  clim2ser2  11265  climub  11271  serf0  11279  mertenslemi1  11462  clim2divap  11467  fprodntrivap  11511  fprodeq0  11544  lmbrf  12756  lmss  12787  lmres  12789  txlm  12820
  Copyright terms: Public domain W3C validator