ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uztrn2 GIF version

Theorem uztrn2 9636
Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
uztrn2.1 𝑍 = (ℤ𝐾)
Assertion
Ref Expression
uztrn2 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)

Proof of Theorem uztrn2
StepHypRef Expression
1 uztrn2.1 . . . 4 𝑍 = (ℤ𝐾)
21eleq2i 2263 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝐾))
3 uztrn 9635 . . . 4 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑀 ∈ (ℤ𝐾))
43ancoms 268 . . 3 ((𝑁 ∈ (ℤ𝐾) ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝐾))
52, 4sylanb 284 . 2 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝐾))
65, 1eleqtrrdi 2290 1 ((𝑁𝑍𝑀 ∈ (ℤ𝑁)) → 𝑀𝑍)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5259  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltwlin 8009
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-neg 8217  df-z 9344  df-uz 9619
This theorem is referenced by:  eluznn0  9690  eluznn  9691  elfzuz2  10121  rexuz3  11172  r19.29uz  11174  r19.2uz  11175  clim2  11465  clim2c  11466  clim0c  11468  2clim  11483  climabs0  11489  climcn1  11490  climcn2  11491  climsqz  11517  climsqz2  11518  clim2ser  11519  clim2ser2  11520  climub  11526  serf0  11534  mertenslemi1  11717  clim2divap  11722  fprodntrivap  11766  fprodeq0  11799  lmbrf  14535  lmss  14566  lmres  14568  txlm  14599
  Copyright terms: Public domain W3C validator