Proof of Theorem xpmapenlem
Step | Hyp | Ref
| Expression |
1 | | fnmap 6621 |
. . 3
⊢
↑𝑚 Fn (V × V) |
2 | | xpmapen.1 |
. . . 4
⊢ 𝐴 ∈ V |
3 | | xpmapen.2 |
. . . 4
⊢ 𝐵 ∈ V |
4 | 2, 3 | xpex 4719 |
. . 3
⊢ (𝐴 × 𝐵) ∈ V |
5 | | xpmapen.3 |
. . 3
⊢ 𝐶 ∈ V |
6 | | fnovex 5875 |
. . 3
⊢ ((
↑𝑚 Fn (V × V) ∧ (𝐴 × 𝐵) ∈ V ∧ 𝐶 ∈ V) → ((𝐴 × 𝐵) ↑𝑚 𝐶) ∈ V) |
7 | 1, 4, 5, 6 | mp3an 1327 |
. 2
⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∈ V |
8 | | fnovex 5875 |
. . . 4
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ↑𝑚 𝐶) ∈ V) |
9 | 1, 2, 5, 8 | mp3an 1327 |
. . 3
⊢ (𝐴 ↑𝑚
𝐶) ∈
V |
10 | | fnovex 5875 |
. . . 4
⊢ ((
↑𝑚 Fn (V × V) ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐵 ↑𝑚 𝐶) ∈ V) |
11 | 1, 3, 5, 10 | mp3an 1327 |
. . 3
⊢ (𝐵 ↑𝑚
𝐶) ∈
V |
12 | 9, 11 | xpex 4719 |
. 2
⊢ ((𝐴 ↑𝑚
𝐶) × (𝐵 ↑𝑚
𝐶)) ∈
V |
13 | 4, 5 | elmap 6643 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ↔ 𝑥:𝐶⟶(𝐴 × 𝐵)) |
14 | | ffvelrn 5618 |
. . . . . . 7
⊢ ((𝑥:𝐶⟶(𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶) → (𝑥‘𝑧) ∈ (𝐴 × 𝐵)) |
15 | 13, 14 | sylanb 282 |
. . . . . 6
⊢ ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑧 ∈ 𝐶) → (𝑥‘𝑧) ∈ (𝐴 × 𝐵)) |
16 | | xp1st 6133 |
. . . . . 6
⊢ ((𝑥‘𝑧) ∈ (𝐴 × 𝐵) → (1st ‘(𝑥‘𝑧)) ∈ 𝐴) |
17 | 15, 16 | syl 14 |
. . . . 5
⊢ ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑧 ∈ 𝐶) → (1st ‘(𝑥‘𝑧)) ∈ 𝐴) |
18 | | xpmapenlem.4 |
. . . . 5
⊢ 𝐷 = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
19 | 17, 18 | fmptd 5639 |
. . . 4
⊢ (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝐷:𝐶⟶𝐴) |
20 | 2, 5 | elmap 6643 |
. . . 4
⊢ (𝐷 ∈ (𝐴 ↑𝑚 𝐶) ↔ 𝐷:𝐶⟶𝐴) |
21 | 19, 20 | sylibr 133 |
. . 3
⊢ (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝐷 ∈ (𝐴 ↑𝑚 𝐶)) |
22 | | xp2nd 6134 |
. . . . . 6
⊢ ((𝑥‘𝑧) ∈ (𝐴 × 𝐵) → (2nd ‘(𝑥‘𝑧)) ∈ 𝐵) |
23 | 15, 22 | syl 14 |
. . . . 5
⊢ ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑧 ∈ 𝐶) → (2nd ‘(𝑥‘𝑧)) ∈ 𝐵) |
24 | | xpmapenlem.5 |
. . . . 5
⊢ 𝑅 = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
25 | 23, 24 | fmptd 5639 |
. . . 4
⊢ (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝑅:𝐶⟶𝐵) |
26 | 3, 5 | elmap 6643 |
. . . 4
⊢ (𝑅 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝑅:𝐶⟶𝐵) |
27 | 25, 26 | sylibr 133 |
. . 3
⊢ (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 𝑅 ∈ (𝐵 ↑𝑚 𝐶)) |
28 | | opelxpi 4636 |
. . 3
⊢ ((𝐷 ∈ (𝐴 ↑𝑚 𝐶) ∧ 𝑅 ∈ (𝐵 ↑𝑚 𝐶)) → 〈𝐷, 𝑅〉 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) |
29 | 21, 27, 28 | syl2anc 409 |
. 2
⊢ (𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) → 〈𝐷, 𝑅〉 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) |
30 | | xp1st 6133 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → (1st
‘𝑦) ∈ (𝐴 ↑𝑚
𝐶)) |
31 | 2, 5 | elmap 6643 |
. . . . . . 7
⊢
((1st ‘𝑦) ∈ (𝐴 ↑𝑚 𝐶) ↔ (1st
‘𝑦):𝐶⟶𝐴) |
32 | 30, 31 | sylib 121 |
. . . . . 6
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → (1st
‘𝑦):𝐶⟶𝐴) |
33 | 32 | ffvelrnda 5620 |
. . . . 5
⊢ ((𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) ∧ 𝑧 ∈ 𝐶) → ((1st ‘𝑦)‘𝑧) ∈ 𝐴) |
34 | | xp2nd 6134 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → (2nd
‘𝑦) ∈ (𝐵 ↑𝑚
𝐶)) |
35 | 3, 5 | elmap 6643 |
. . . . . . 7
⊢
((2nd ‘𝑦) ∈ (𝐵 ↑𝑚 𝐶) ↔ (2nd
‘𝑦):𝐶⟶𝐵) |
36 | 34, 35 | sylib 121 |
. . . . . 6
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → (2nd
‘𝑦):𝐶⟶𝐵) |
37 | 36 | ffvelrnda 5620 |
. . . . 5
⊢ ((𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) ∧ 𝑧 ∈ 𝐶) → ((2nd ‘𝑦)‘𝑧) ∈ 𝐵) |
38 | | opelxpi 4636 |
. . . . 5
⊢
((((1st ‘𝑦)‘𝑧) ∈ 𝐴 ∧ ((2nd ‘𝑦)‘𝑧) ∈ 𝐵) → 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉 ∈ (𝐴 × 𝐵)) |
39 | 33, 37, 38 | syl2anc 409 |
. . . 4
⊢ ((𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) ∧ 𝑧 ∈ 𝐶) → 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉 ∈ (𝐴 × 𝐵)) |
40 | | xpmapenlem.6 |
. . . 4
⊢ 𝑆 = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
41 | 39, 40 | fmptd 5639 |
. . 3
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → 𝑆:𝐶⟶(𝐴 × 𝐵)) |
42 | 4, 5 | elmap 6643 |
. . 3
⊢ (𝑆 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ↔ 𝑆:𝐶⟶(𝐴 × 𝐵)) |
43 | 41, 42 | sylibr 133 |
. 2
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → 𝑆 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶)) |
44 | | 1st2nd2 6143 |
. . . . 5
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
45 | 44 | ad2antlr 481 |
. . . 4
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
46 | 32 | feqmptd 5539 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → (1st
‘𝑦) = (𝑧 ∈ 𝐶 ↦ ((1st ‘𝑦)‘𝑧))) |
47 | 46 | ad2antlr 481 |
. . . . . 6
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (1st ‘𝑦) = (𝑧 ∈ 𝐶 ↦ ((1st ‘𝑦)‘𝑧))) |
48 | | simplr 520 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → 𝑥 = 𝑆) |
49 | 48 | fveq1d 5488 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (𝑥‘𝑧) = (𝑆‘𝑧)) |
50 | | vex 2729 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
51 | | 1stexg 6135 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ V → (1st
‘𝑦) ∈
V) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(1st ‘𝑦) ∈ V |
53 | | vex 2729 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
54 | 52, 53 | fvex 5506 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑦)‘𝑧) ∈ V |
55 | | 2ndexg 6136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ V → (2nd
‘𝑦) ∈
V) |
56 | 50, 55 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(2nd ‘𝑦) ∈ V |
57 | 56, 53 | fvex 5506 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑦)‘𝑧) ∈ V |
58 | 54, 57 | opex 4207 |
. . . . . . . . . . . . 13
⊢
〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉 ∈ V |
59 | 40 | fvmpt2 5569 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐶 ∧ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉 ∈ V) → (𝑆‘𝑧) = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
60 | 58, 59 | mpan2 422 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐶 → (𝑆‘𝑧) = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
61 | 60 | adantl 275 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (𝑆‘𝑧) = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
62 | 49, 61 | eqtrd 2198 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (𝑥‘𝑧) = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
63 | 62 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (1st ‘(𝑥‘𝑧)) = (1st
‘〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉)) |
64 | 54, 57 | op1st 6114 |
. . . . . . . . 9
⊢
(1st ‘〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) = ((1st ‘𝑦)‘𝑧) |
65 | 63, 64 | eqtrdi 2215 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (1st ‘(𝑥‘𝑧)) = ((1st ‘𝑦)‘𝑧)) |
66 | 65 | mpteq2dva 4072 |
. . . . . . 7
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((1st ‘𝑦)‘𝑧))) |
67 | 18, 66 | syl5eq 2211 |
. . . . . 6
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝐷 = (𝑧 ∈ 𝐶 ↦ ((1st ‘𝑦)‘𝑧))) |
68 | 47, 67 | eqtr4d 2201 |
. . . . 5
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (1st ‘𝑦) = 𝐷) |
69 | 36 | feqmptd 5539 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) → (2nd
‘𝑦) = (𝑧 ∈ 𝐶 ↦ ((2nd ‘𝑦)‘𝑧))) |
70 | 69 | ad2antlr 481 |
. . . . . 6
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (2nd ‘𝑦) = (𝑧 ∈ 𝐶 ↦ ((2nd ‘𝑦)‘𝑧))) |
71 | 62 | fveq2d 5490 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (2nd ‘(𝑥‘𝑧)) = (2nd
‘〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉)) |
72 | 54, 57 | op2nd 6115 |
. . . . . . . . 9
⊢
(2nd ‘〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) = ((2nd ‘𝑦)‘𝑧) |
73 | 71, 72 | eqtrdi 2215 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) ∧ 𝑧 ∈ 𝐶) → (2nd ‘(𝑥‘𝑧)) = ((2nd ‘𝑦)‘𝑧)) |
74 | 73 | mpteq2dva 4072 |
. . . . . . 7
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((2nd ‘𝑦)‘𝑧))) |
75 | 24, 74 | syl5eq 2211 |
. . . . . 6
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝑅 = (𝑧 ∈ 𝐶 ↦ ((2nd ‘𝑦)‘𝑧))) |
76 | 70, 75 | eqtr4d 2201 |
. . . . 5
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → (2nd ‘𝑦) = 𝑅) |
77 | 68, 76 | opeq12d 3766 |
. . . 4
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈𝐷, 𝑅〉) |
78 | 45, 77 | eqtrd 2198 |
. . 3
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑥 = 𝑆) → 𝑦 = 〈𝐷, 𝑅〉) |
79 | | simpll 519 |
. . . . . 6
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶)) |
80 | 79, 13 | sylib 121 |
. . . . 5
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑥:𝐶⟶(𝐴 × 𝐵)) |
81 | 80 | feqmptd 5539 |
. . . 4
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑥 = (𝑧 ∈ 𝐶 ↦ (𝑥‘𝑧))) |
82 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑦 = 〈𝐷, 𝑅〉) |
83 | 82 | fveq2d 5490 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (1st ‘𝑦) = (1st
‘〈𝐷, 𝑅〉)) |
84 | 21 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝐷 ∈ (𝐴 ↑𝑚 𝐶)) |
85 | 27 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑅 ∈ (𝐵 ↑𝑚 𝐶)) |
86 | | op1stg 6118 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (𝐴 ↑𝑚 𝐶) ∧ 𝑅 ∈ (𝐵 ↑𝑚 𝐶)) → (1st
‘〈𝐷, 𝑅〉) = 𝐷) |
87 | 84, 85, 86 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (1st
‘〈𝐷, 𝑅〉) = 𝐷) |
88 | 83, 87 | eqtrd 2198 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (1st ‘𝑦) = 𝐷) |
89 | 88 | fveq1d 5488 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → ((1st ‘𝑦)‘𝑧) = (𝐷‘𝑧)) |
90 | | vex 2729 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
91 | 90, 53 | fvex 5506 |
. . . . . . . . . . 11
⊢ (𝑥‘𝑧) ∈ V |
92 | | 1stexg 6135 |
. . . . . . . . . . 11
⊢ ((𝑥‘𝑧) ∈ V → (1st
‘(𝑥‘𝑧)) ∈ V) |
93 | 91, 92 | ax-mp 5 |
. . . . . . . . . 10
⊢
(1st ‘(𝑥‘𝑧)) ∈ V |
94 | 18 | fvmpt2 5569 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐶 ∧ (1st ‘(𝑥‘𝑧)) ∈ V) → (𝐷‘𝑧) = (1st ‘(𝑥‘𝑧))) |
95 | 93, 94 | mpan2 422 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐶 → (𝐷‘𝑧) = (1st ‘(𝑥‘𝑧))) |
96 | 89, 95 | sylan9eq 2219 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) ∧ 𝑧 ∈ 𝐶) → ((1st ‘𝑦)‘𝑧) = (1st ‘(𝑥‘𝑧))) |
97 | 82 | fveq2d 5490 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (2nd ‘𝑦) = (2nd
‘〈𝐷, 𝑅〉)) |
98 | | op2ndg 6119 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (𝐴 ↑𝑚 𝐶) ∧ 𝑅 ∈ (𝐵 ↑𝑚 𝐶)) → (2nd
‘〈𝐷, 𝑅〉) = 𝑅) |
99 | 84, 85, 98 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (2nd
‘〈𝐷, 𝑅〉) = 𝑅) |
100 | 97, 99 | eqtrd 2198 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (2nd ‘𝑦) = 𝑅) |
101 | 100 | fveq1d 5488 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → ((2nd ‘𝑦)‘𝑧) = (𝑅‘𝑧)) |
102 | | 2ndexg 6136 |
. . . . . . . . . . 11
⊢ ((𝑥‘𝑧) ∈ V → (2nd
‘(𝑥‘𝑧)) ∈ V) |
103 | 91, 102 | ax-mp 5 |
. . . . . . . . . 10
⊢
(2nd ‘(𝑥‘𝑧)) ∈ V |
104 | 24 | fvmpt2 5569 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐶 ∧ (2nd ‘(𝑥‘𝑧)) ∈ V) → (𝑅‘𝑧) = (2nd ‘(𝑥‘𝑧))) |
105 | 103, 104 | mpan2 422 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐶 → (𝑅‘𝑧) = (2nd ‘(𝑥‘𝑧))) |
106 | 101, 105 | sylan9eq 2219 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) ∧ 𝑧 ∈ 𝐶) → ((2nd ‘𝑦)‘𝑧) = (2nd ‘(𝑥‘𝑧))) |
107 | 96, 106 | opeq12d 3766 |
. . . . . . 7
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) ∧ 𝑧 ∈ 𝐶) → 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉 = 〈(1st ‘(𝑥‘𝑧)), (2nd ‘(𝑥‘𝑧))〉) |
108 | 80 | ffvelrnda 5620 |
. . . . . . . 8
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) ∧ 𝑧 ∈ 𝐶) → (𝑥‘𝑧) ∈ (𝐴 × 𝐵)) |
109 | | 1st2nd2 6143 |
. . . . . . . 8
⊢ ((𝑥‘𝑧) ∈ (𝐴 × 𝐵) → (𝑥‘𝑧) = 〈(1st ‘(𝑥‘𝑧)), (2nd ‘(𝑥‘𝑧))〉) |
110 | 108, 109 | syl 14 |
. . . . . . 7
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) ∧ 𝑧 ∈ 𝐶) → (𝑥‘𝑧) = 〈(1st ‘(𝑥‘𝑧)), (2nd ‘(𝑥‘𝑧))〉) |
111 | 107, 110 | eqtr4d 2201 |
. . . . . 6
⊢ ((((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) ∧ 𝑧 ∈ 𝐶) → 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉 = (𝑥‘𝑧)) |
112 | 111 | mpteq2dva 4072 |
. . . . 5
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) = (𝑧 ∈ 𝐶 ↦ (𝑥‘𝑧))) |
113 | 40, 112 | syl5eq 2211 |
. . . 4
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑆 = (𝑧 ∈ 𝐶 ↦ (𝑥‘𝑧))) |
114 | 81, 113 | eqtr4d 2201 |
. . 3
⊢ (((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) ∧ 𝑦 = 〈𝐷, 𝑅〉) → 𝑥 = 𝑆) |
115 | 78, 114 | impbida 586 |
. 2
⊢ ((𝑥 ∈ ((𝐴 × 𝐵) ↑𝑚 𝐶) ∧ 𝑦 ∈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶))) → (𝑥 = 𝑆 ↔ 𝑦 = 〈𝐷, 𝑅〉)) |
116 | 7, 12, 29, 43, 115 | en3i 6737 |
1
⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |