Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcan GIF version

Theorem nnmcan 6419
 Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmcan (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem nnmcan
StepHypRef Expression
1 3anrot 968 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω))
2 nnmword 6418 . . . . 5 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
31, 2sylanb 282 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
4 3anrev 973 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 nnmword 6418 . . . . 5 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
64, 5sylanb 282 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
73, 6anbi12d 465 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵))))
87bicomd 140 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)) ↔ (𝐵𝐶𝐶𝐵)))
9 eqss 3113 . 2 ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
10 eqss 3113 . 2 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
118, 9, 103bitr4g 222 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   ⊆ wss 3072  ∅c0 3364  ωcom 4508  (class class class)co 5778   ·o comu 6315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4047  ax-sep 4050  ax-nul 4058  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-iinf 4506 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-tr 4031  df-id 4219  df-iord 4292  df-on 4294  df-suc 4297  df-iom 4509  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-f1 5132  df-fo 5133  df-f1o 5134  df-fv 5135  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-recs 6206  df-irdg 6271  df-oadd 6321  df-omul 6322 This theorem is referenced by:  mulcanpig  7163  enq0tr  7262
 Copyright terms: Public domain W3C validator