![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elioore | GIF version |
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elioore | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 9979 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) ↔ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
2 | 3ancomb 988 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
3 | xrre2 9890 | . . 3 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) → 𝐴 ∈ ℝ) | |
4 | 2, 3 | sylanb 284 | . 2 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) → 𝐴 ∈ ℝ) |
5 | 1, 4 | sylbi 121 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℝcr 7873 ℝ*cxr 8055 < clt 8056 (,)cioo 9957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-ioo 9961 |
This theorem is referenced by: iooval2 9984 elioo4g 10003 ioossre 10004 zltaddlt1le 10076 tgioo 14733 ivthinc 14822 ivthdichlem 14830 reeff1oleme 14948 sin0pilem1 14957 sin0pilem2 14958 pilem3 14959 pire 14962 sinq34lt0t 15007 cosq14gt0 15008 cosq23lt0 15009 coseq0q4123 15010 tanrpcl 15013 tangtx 15014 cos02pilt1 15027 cos0pilt1 15028 ioocosf1o 15030 iooref1o 15594 |
Copyright terms: Public domain | W3C validator |