ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioore GIF version

Theorem elioore 10016
Description: A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioore (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ)

Proof of Theorem elioore
StepHypRef Expression
1 elioo3g 10014 . 2 (𝐴 ∈ (𝐵(,)𝐶) ↔ ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴𝐴 < 𝐶)))
2 3ancomb 988 . . 3 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) ↔ (𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*))
3 xrre2 9925 . . 3 (((𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 < 𝐴𝐴 < 𝐶)) → 𝐴 ∈ ℝ)
42, 3sylanb 284 . 2 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝐵 < 𝐴𝐴 < 𝐶)) → 𝐴 ∈ ℝ)
51, 4sylbi 121 1 (𝐴 ∈ (𝐵(,)𝐶) → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2175   class class class wbr 4043  (class class class)co 5934  cr 7906  *cxr 8088   < clt 8089  (,)cioo 9992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-ioo 9996
This theorem is referenced by:  iooval2  10019  elioo4g  10038  ioossre  10039  zltaddlt1le  10111  tgioo  14944  ivthinc  15033  ivthdichlem  15041  reeff1oleme  15162  sin0pilem1  15171  sin0pilem2  15172  pilem3  15173  pire  15176  sinq34lt0t  15221  cosq14gt0  15222  cosq23lt0  15223  coseq0q4123  15224  tanrpcl  15227  tangtx  15228  cos02pilt1  15241  cos0pilt1  15242  ioocosf1o  15244  iooref1o  15837
  Copyright terms: Public domain W3C validator