ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuun GIF version

Theorem djuun 7181
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
Assertion
Ref Expression
djuun ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)

Proof of Theorem djuun
StepHypRef Expression
1 df-ima 4693 . . 3 (inl “ 𝐴) = ran (inl ↾ 𝐴)
2 df-ima 4693 . . 3 (inr “ 𝐵) = ran (inr ↾ 𝐵)
31, 2uneq12i 3327 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵))
4 djuunr 7180 . 2 (ran (inl ↾ 𝐴) ∪ ran (inr ↾ 𝐵)) = (𝐴𝐵)
53, 4eqtri 2227 1 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3166  ran crn 4681  cres 4682  cima 4683  cdju 7151  inlcinl 7159  inrcinr 7160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-1st 6236  df-2nd 6237  df-1o 6512  df-dju 7152  df-inl 7161  df-inr 7162
This theorem is referenced by:  endjusym  7210  ctssdccl  7225  dju1p1e2  7318  endjudisj  7335  djuen  7336
  Copyright terms: Public domain W3C validator