MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlkonlem2 Structured version   Visualization version   GIF version

Theorem 0wlkonlem2 29369
Description: Lemma 2 for 0wlkon 29370 and 0trlon 29374. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypothesis
Ref Expression
0wlk.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0wlkonlem2 ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0)))

Proof of Theorem 0wlkonlem2
StepHypRef Expression
1 ovex 7441 . 2 (0...0) ∈ V
2 0wlk.v . . 3 𝑉 = (Vtx‘𝐺)
32fvexi 6905 . 2 𝑉 ∈ V
4 simpl 483 . 2 ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉)
5 fpmg 8861 . 2 (((0...0) ∈ V ∧ 𝑉 ∈ V ∧ 𝑃:(0...0)⟶𝑉) → 𝑃 ∈ (𝑉 ↑pm (0...0)))
61, 3, 4, 5mp3an12i 1465 1 ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  âŸ¶wf 6539  â€˜cfv 6543  (class class class)co 7408   ↑pm cpm 8820  0cc0 11109  ...cfz 13483  Vtxcvtx 28253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-pm 8822
This theorem is referenced by:  0wlkon  29370  0trlon  29374  0pthon  29377
  Copyright terms: Public domain W3C validator