MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0wlkonlem2 Structured version   Visualization version   GIF version

Theorem 0wlkonlem2 30055
Description: Lemma 2 for 0wlkon 30056 and 0trlon 30060. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.)
Hypothesis
Ref Expression
0wlk.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
0wlkonlem2 ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉pm (0...0)))

Proof of Theorem 0wlkonlem2
StepHypRef Expression
1 ovex 7427 . 2 (0...0) ∈ V
2 0wlk.v . . 3 𝑉 = (Vtx‘𝐺)
32fvexi 6879 . 2 𝑉 ∈ V
4 simpl 482 . 2 ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉)
5 fpmg 8845 . 2 (((0...0) ∈ V ∧ 𝑉 ∈ V ∧ 𝑃:(0...0)⟶𝑉) → 𝑃 ∈ (𝑉pm (0...0)))
61, 3, 4, 5mp3an12i 1467 1 ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉pm (0...0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  wf 6515  cfv 6519  (class class class)co 7394  pm cpm 8804  0cc0 11086  ...cfz 13481  Vtxcvtx 28930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-pm 8806
This theorem is referenced by:  0wlkon  30056  0trlon  30060  0pthon  30063
  Copyright terms: Public domain W3C validator