![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wlkonlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 0wlkon 29808 and 0trlon 29812. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
Ref | Expression |
---|---|
0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0wlkonlem2 | ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7445 | . 2 ⊢ (0...0) ∈ V | |
2 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | fvexi 6905 | . 2 ⊢ 𝑉 ∈ V |
4 | simpl 482 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉) | |
5 | fpmg 8868 | . 2 ⊢ (((0...0) ∈ V ∧ 𝑉 ∈ V ∧ 𝑃:(0...0)⟶𝑉) → 𝑃 ∈ (𝑉 ↑pm (0...0))) | |
6 | 1, 3, 4, 5 | mp3an12i 1464 | 1 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ↑pm cpm 8827 0cc0 11116 ...cfz 13491 Vtxcvtx 28691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-pm 8829 |
This theorem is referenced by: 0wlkon 29808 0trlon 29812 0pthon 29815 |
Copyright terms: Public domain | W3C validator |