Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0wlkonlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 0wlkon 28017 and 0trlon 28021. (Contributed by AV, 3-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
Ref | Expression |
---|---|
0wlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0wlkonlem2 | ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7189 | . 2 ⊢ (0...0) ∈ V | |
2 | 0wlk.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | fvexi 6677 | . 2 ⊢ 𝑉 ∈ V |
4 | simpl 486 | . 2 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃:(0...0)⟶𝑉) | |
5 | fpmg 8463 | . 2 ⊢ (((0...0) ∈ V ∧ 𝑉 ∈ V ∧ 𝑃:(0...0)⟶𝑉) → 𝑃 ∈ (𝑉 ↑pm (0...0))) | |
6 | 1, 3, 4, 5 | mp3an12i 1462 | 1 ⊢ ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) → 𝑃 ∈ (𝑉 ↑pm (0...0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 ↑pm cpm 8423 0cc0 10588 ...cfz 12952 Vtxcvtx 26901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-pm 8425 |
This theorem is referenced by: 0wlkon 28017 0trlon 28021 0pthon 28024 |
Copyright terms: Public domain | W3C validator |