MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem4 Structured version   Visualization version   GIF version

Theorem psgnunilem4 19434
Description: Lemma for psgnuni 19436. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem4.g 𝐺 = (SymGrp‘𝐷)
psgnunilem4.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem4.d (𝜑𝐷𝑉)
psgnunilem4.w1 (𝜑𝑊 ∈ Word 𝑇)
psgnunilem4.w2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
Assertion
Ref Expression
psgnunilem4 (𝜑 → (-1↑(♯‘𝑊)) = 1)

Proof of Theorem psgnunilem4
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem4.w1 . 2 (𝜑𝑊 ∈ Word 𝑇)
2 psgnunilem4.w2 . 2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
3 wrdfin 14504 . . . . 5 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
4 hashcl 14328 . . . . 5 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
51, 3, 43syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6 nn0uz 12842 . . . 4 0 = (ℤ‘0)
75, 6eleqtrdi 2839 . . 3 (𝜑 → (♯‘𝑊) ∈ (ℤ‘0))
8 fveq2 6861 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
9 hash0 14339 . . . . . . . . 9 (♯‘∅) = 0
108, 9eqtrdi 2781 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = 0)
1110oveq2d 7406 . . . . . . 7 (𝑤 = ∅ → (-1↑(♯‘𝑤)) = (-1↑0))
12 neg1cn 12178 . . . . . . . 8 -1 ∈ ℂ
13 exp0 14037 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
1412, 13ax-mp 5 . . . . . . 7 (-1↑0) = 1
1511, 14eqtrdi 2781 . . . . . 6 (𝑤 = ∅ → (-1↑(♯‘𝑤)) = 1)
16152a1d 26 . . . . 5 (𝑤 = ∅ → ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1)))
17 psgnunilem4.g . . . . . . . . . . . . 13 𝐺 = (SymGrp‘𝐷)
18 psgnunilem4.t . . . . . . . . . . . . 13 𝑇 = ran (pmTrsp‘𝐷)
19 simpl1 1192 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝜑)
20 psgnunilem4.d . . . . . . . . . . . . . 14 (𝜑𝐷𝑉)
2119, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝐷𝑉)
22 simpl3l 1229 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
23 eqidd 2731 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (♯‘𝑤) = (♯‘𝑤))
24 wrdfin 14504 . . . . . . . . . . . . . . 15 (𝑤 ∈ Word 𝑇𝑤 ∈ Fin)
2522, 24syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
26 simpl2 1193 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
27 hashnncl 14338 . . . . . . . . . . . . . . 15 (𝑤 ∈ Fin → ((♯‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅))
2827biimpar 477 . . . . . . . . . . . . . 14 ((𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → (♯‘𝑤) ∈ ℕ)
2925, 26, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (♯‘𝑤) ∈ ℕ)
30 simpl3r 1230 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (𝐺 Σg 𝑤) = ( I ↾ 𝐷))
31 fveqeq2 6870 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑤) − 2) ↔ (♯‘𝑦) = ((♯‘𝑤) − 2)))
32 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦))
3332eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3431, 33anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))))
3534cbvrexvw 3217 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3635notbii 320 . . . . . . . . . . . . . . 15 (¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3736biimpi 216 . . . . . . . . . . . . . 14 (¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3837adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3917, 18, 21, 22, 23, 29, 30, 38psgnunilem3 19433 . . . . . . . . . . . 12 ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
40 iman 401 . . . . . . . . . . . 12 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ↔ ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4139, 40mpbir 231 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
42 df-rex 3055 . . . . . . . . . . 11 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4341, 42sylib 218 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
44 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 𝑥 ∈ Word 𝑇)
45 simprrr 781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
4644, 45jca 511 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
47 wrdfin 14504 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word 𝑇𝑥 ∈ Fin)
48 hashcl 14328 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4944, 47, 483syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) ∈ ℕ0)
50 simp3l 1202 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
52 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
5351, 52, 28syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (♯‘𝑤) ∈ ℕ)
5453adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℕ)
55 simprrl 780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) = ((♯‘𝑤) − 2))
5654nnred 12208 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℝ)
57 2rp 12963 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
58 ltsubrp 12996 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑤) ∈ ℝ ∧ 2 ∈ ℝ+) → ((♯‘𝑤) − 2) < (♯‘𝑤))
5956, 57, 58sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
6055, 59eqbrtrd 5132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) < (♯‘𝑤))
61 elfzo0 13668 . . . . . . . . . . . . . . . . 17 ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ (♯‘𝑥) < (♯‘𝑤)))
6249, 54, 60, 61syl3anbrc 1344 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) ∈ (0..^(♯‘𝑤)))
63 id 22 . . . . . . . . . . . . . . . . 17 (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)))
6463com13 88 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑥)) = 1)))
6546, 62, 64sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑥)) = 1))
6655oveq2d 7406 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑥)) = (-1↑((♯‘𝑤) − 2)))
6712a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ∈ ℂ)
68 neg1ne0 12180 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
6968a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ≠ 0)
70 2z 12572 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
7170a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 2 ∈ ℤ)
7254nnzd 12563 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℤ)
7367, 69, 71, 72expsubd 14129 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑((♯‘𝑤) − 2)) = ((-1↑(♯‘𝑤)) / (-1↑2)))
74 neg1sqe1 14168 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
7574oveq2i 7401 . . . . . . . . . . . . . . . . . 18 ((-1↑(♯‘𝑤)) / (-1↑2)) = ((-1↑(♯‘𝑤)) / 1)
76 m1expcl 14058 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ ℤ)
7776zcnd 12646 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ ℂ)
7872, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑤)) ∈ ℂ)
7978div1d 11957 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑤)) / 1) = (-1↑(♯‘𝑤)))
8075, 79eqtrid 2777 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑤)) / (-1↑2)) = (-1↑(♯‘𝑤)))
8166, 73, 803eqtrd 2769 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑥)) = (-1↑(♯‘𝑤)))
8281eqeq1d 2732 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑥)) = 1 ↔ (-1↑(♯‘𝑤)) = 1))
8365, 82sylibd 239 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))
8483ex 412 . . . . . . . . . . . . 13 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1)))
8584com23 86 . . . . . . . . . . . 12 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
8685alimdv 1916 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
87 19.23v 1942 . . . . . . . . . . 11 (∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1) ↔ (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1))
8886, 87imbitrdi 251 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
8943, 88mpid 44 . . . . . . . . 9 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))
90893exp 1119 . . . . . . . 8 (𝜑 → (𝑤 ≠ ∅ → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))))
9190com34 91 . . . . . . 7 (𝜑 → (𝑤 ≠ ∅ → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))))
9291com12 32 . . . . . 6 (𝑤 ≠ ∅ → (𝜑 → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))))
9392impd 410 . . . . 5 (𝑤 ≠ ∅ → ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1)))
9416, 93pm2.61ine 3009 . . . 4 ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))
95943adant2 1131 . . 3 ((𝜑 ∧ (♯‘𝑤) ∈ (0...(♯‘𝑊)) ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))
96 eleq1 2817 . . . . 5 (𝑤 = 𝑥 → (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇))
97 oveq2 7398 . . . . . 6 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
9897eqeq1d 2732 . . . . 5 (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
9996, 98anbi12d 632 . . . 4 (𝑤 = 𝑥 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
100 fveq2 6861 . . . . . 6 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
101100oveq2d 7406 . . . . 5 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
102101eqeq1d 2732 . . . 4 (𝑤 = 𝑥 → ((-1↑(♯‘𝑤)) = 1 ↔ (-1↑(♯‘𝑥)) = 1))
10399, 102imbi12d 344 . . 3 (𝑤 = 𝑥 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1) ↔ ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)))
104 eleq1 2817 . . . . 5 (𝑤 = 𝑊 → (𝑤 ∈ Word 𝑇𝑊 ∈ Word 𝑇))
105 oveq2 7398 . . . . . 6 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
106105eqeq1d 2732 . . . . 5 (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))
107104, 106anbi12d 632 . . . 4 (𝑤 = 𝑊 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷))))
108 fveq2 6861 . . . . . 6 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
109108oveq2d 7406 . . . . 5 (𝑤 = 𝑊 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑊)))
110109eqeq1d 2732 . . . 4 (𝑤 = 𝑊 → ((-1↑(♯‘𝑤)) = 1 ↔ (-1↑(♯‘𝑊)) = 1))
111107, 110imbi12d 344 . . 3 (𝑤 = 𝑊 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1) ↔ ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑊)) = 1)))
1121, 7, 95, 103, 111, 100, 108uzindi 13954 . 2 (𝜑 → ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑊)) = 1))
1131, 2, 112mp2and 699 1 (𝜑 → (-1↑(♯‘𝑊)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  c0 4299   class class class wbr 5110   I cid 5535  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  ..^cfzo 13622  cexp 14033  chash 14302  Word cword 14485   Σg cgsu 17410  SymGrpcsymg 19306  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-symg 19307  df-pmtr 19379
This theorem is referenced by:  psgnuni  19436
  Copyright terms: Public domain W3C validator