MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem4 Structured version   Visualization version   GIF version

Theorem psgnunilem4 19284
Description: Lemma for psgnuni 19286. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem4.g 𝐺 = (SymGrp‘𝐷)
psgnunilem4.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem4.d (𝜑𝐷𝑉)
psgnunilem4.w1 (𝜑𝑊 ∈ Word 𝑇)
psgnunilem4.w2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
Assertion
Ref Expression
psgnunilem4 (𝜑 → (-1↑(♯‘𝑊)) = 1)

Proof of Theorem psgnunilem4
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem4.w1 . 2 (𝜑𝑊 ∈ Word 𝑇)
2 psgnunilem4.w2 . 2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
3 wrdfin 14426 . . . . 5 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
4 hashcl 14262 . . . . 5 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
51, 3, 43syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6 nn0uz 12810 . . . 4 0 = (ℤ‘0)
75, 6eleqtrdi 2844 . . 3 (𝜑 → (♯‘𝑊) ∈ (ℤ‘0))
8 fveq2 6843 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
9 hash0 14273 . . . . . . . . 9 (♯‘∅) = 0
108, 9eqtrdi 2789 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = 0)
1110oveq2d 7374 . . . . . . 7 (𝑤 = ∅ → (-1↑(♯‘𝑤)) = (-1↑0))
12 neg1cn 12272 . . . . . . . 8 -1 ∈ ℂ
13 exp0 13977 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
1412, 13ax-mp 5 . . . . . . 7 (-1↑0) = 1
1511, 14eqtrdi 2789 . . . . . 6 (𝑤 = ∅ → (-1↑(♯‘𝑤)) = 1)
16152a1d 26 . . . . 5 (𝑤 = ∅ → ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1)))
17 psgnunilem4.g . . . . . . . . . . . . 13 𝐺 = (SymGrp‘𝐷)
18 psgnunilem4.t . . . . . . . . . . . . 13 𝑇 = ran (pmTrsp‘𝐷)
19 simpl1 1192 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝜑)
20 psgnunilem4.d . . . . . . . . . . . . . 14 (𝜑𝐷𝑉)
2119, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝐷𝑉)
22 simpl3l 1229 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
23 eqidd 2734 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (♯‘𝑤) = (♯‘𝑤))
24 wrdfin 14426 . . . . . . . . . . . . . . 15 (𝑤 ∈ Word 𝑇𝑤 ∈ Fin)
2522, 24syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
26 simpl2 1193 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
27 hashnncl 14272 . . . . . . . . . . . . . . 15 (𝑤 ∈ Fin → ((♯‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅))
2827biimpar 479 . . . . . . . . . . . . . 14 ((𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → (♯‘𝑤) ∈ ℕ)
2925, 26, 28syl2anc 585 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (♯‘𝑤) ∈ ℕ)
30 simpl3r 1230 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (𝐺 Σg 𝑤) = ( I ↾ 𝐷))
31 fveqeq2 6852 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑤) − 2) ↔ (♯‘𝑦) = ((♯‘𝑤) − 2)))
32 oveq2 7366 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦))
3332eqeq1d 2735 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3431, 33anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))))
3534cbvrexvw 3225 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3635notbii 320 . . . . . . . . . . . . . . 15 (¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3736biimpi 215 . . . . . . . . . . . . . 14 (¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3837adantl 483 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3917, 18, 21, 22, 23, 29, 30, 38psgnunilem3 19283 . . . . . . . . . . . 12 ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
40 iman 403 . . . . . . . . . . . 12 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ↔ ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4139, 40mpbir 230 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
42 df-rex 3071 . . . . . . . . . . 11 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4341, 42sylib 217 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
44 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 𝑥 ∈ Word 𝑇)
45 simprrr 781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
4644, 45jca 513 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
47 wrdfin 14426 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word 𝑇𝑥 ∈ Fin)
48 hashcl 14262 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4944, 47, 483syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) ∈ ℕ0)
50 simp3l 1202 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
52 simp2 1138 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
5351, 52, 28syl2anc 585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (♯‘𝑤) ∈ ℕ)
5453adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℕ)
55 simprrl 780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) = ((♯‘𝑤) − 2))
5654nnred 12173 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℝ)
57 2rp 12925 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
58 ltsubrp 12956 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑤) ∈ ℝ ∧ 2 ∈ ℝ+) → ((♯‘𝑤) − 2) < (♯‘𝑤))
5956, 57, 58sylancl 587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
6055, 59eqbrtrd 5128 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) < (♯‘𝑤))
61 elfzo0 13619 . . . . . . . . . . . . . . . . 17 ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ (♯‘𝑥) < (♯‘𝑤)))
6249, 54, 60, 61syl3anbrc 1344 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) ∈ (0..^(♯‘𝑤)))
63 id 22 . . . . . . . . . . . . . . . . 17 (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)))
6463com13 88 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑥)) = 1)))
6546, 62, 64sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑥)) = 1))
6655oveq2d 7374 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑥)) = (-1↑((♯‘𝑤) − 2)))
6712a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ∈ ℂ)
68 neg1ne0 12274 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
6968a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ≠ 0)
70 2z 12540 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
7170a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 2 ∈ ℤ)
7254nnzd 12531 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℤ)
7367, 69, 71, 72expsubd 14068 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑((♯‘𝑤) − 2)) = ((-1↑(♯‘𝑤)) / (-1↑2)))
74 neg1sqe1 14106 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
7574oveq2i 7369 . . . . . . . . . . . . . . . . . 18 ((-1↑(♯‘𝑤)) / (-1↑2)) = ((-1↑(♯‘𝑤)) / 1)
76 m1expcl 13998 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ ℤ)
7776zcnd 12613 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ ℂ)
7872, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑤)) ∈ ℂ)
7978div1d 11928 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑤)) / 1) = (-1↑(♯‘𝑤)))
8075, 79eqtrid 2785 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑤)) / (-1↑2)) = (-1↑(♯‘𝑤)))
8166, 73, 803eqtrd 2777 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑥)) = (-1↑(♯‘𝑤)))
8281eqeq1d 2735 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑥)) = 1 ↔ (-1↑(♯‘𝑤)) = 1))
8365, 82sylibd 238 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))
8483ex 414 . . . . . . . . . . . . 13 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1)))
8584com23 86 . . . . . . . . . . . 12 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
8685alimdv 1920 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
87 19.23v 1946 . . . . . . . . . . 11 (∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1) ↔ (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1))
8886, 87syl6ib 251 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
8943, 88mpid 44 . . . . . . . . 9 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))
90893exp 1120 . . . . . . . 8 (𝜑 → (𝑤 ≠ ∅ → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))))
9190com34 91 . . . . . . 7 (𝜑 → (𝑤 ≠ ∅ → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))))
9291com12 32 . . . . . 6 (𝑤 ≠ ∅ → (𝜑 → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))))
9392impd 412 . . . . 5 (𝑤 ≠ ∅ → ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1)))
9416, 93pm2.61ine 3025 . . . 4 ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))
95943adant2 1132 . . 3 ((𝜑 ∧ (♯‘𝑤) ∈ (0...(♯‘𝑊)) ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))
96 eleq1 2822 . . . . 5 (𝑤 = 𝑥 → (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇))
97 oveq2 7366 . . . . . 6 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
9897eqeq1d 2735 . . . . 5 (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
9996, 98anbi12d 632 . . . 4 (𝑤 = 𝑥 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
100 fveq2 6843 . . . . . 6 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
101100oveq2d 7374 . . . . 5 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
102101eqeq1d 2735 . . . 4 (𝑤 = 𝑥 → ((-1↑(♯‘𝑤)) = 1 ↔ (-1↑(♯‘𝑥)) = 1))
10399, 102imbi12d 345 . . 3 (𝑤 = 𝑥 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1) ↔ ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)))
104 eleq1 2822 . . . . 5 (𝑤 = 𝑊 → (𝑤 ∈ Word 𝑇𝑊 ∈ Word 𝑇))
105 oveq2 7366 . . . . . 6 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
106105eqeq1d 2735 . . . . 5 (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))
107104, 106anbi12d 632 . . . 4 (𝑤 = 𝑊 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷))))
108 fveq2 6843 . . . . . 6 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
109108oveq2d 7374 . . . . 5 (𝑤 = 𝑊 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑊)))
110109eqeq1d 2735 . . . 4 (𝑤 = 𝑊 → ((-1↑(♯‘𝑤)) = 1 ↔ (-1↑(♯‘𝑊)) = 1))
111107, 110imbi12d 345 . . 3 (𝑤 = 𝑊 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1) ↔ ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑊)) = 1)))
1121, 7, 95, 103, 111, 100, 108uzindi 13893 . 2 (𝜑 → ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑊)) = 1))
1131, 2, 112mp2and 698 1 (𝜑 → (-1↑(♯‘𝑊)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088  wal 1540   = wceq 1542  wex 1782  wcel 2107  wne 2940  wrex 3070  c0 4283   class class class wbr 5106   I cid 5531  ran crn 5635  cres 5636  cfv 6497  (class class class)co 7358  Fincfn 8886  cc 11054  cr 11055  0cc0 11056  1c1 11057   < clt 11194  cmin 11390  -cneg 11391   / cdiv 11817  cn 12158  2c2 12213  0cn0 12418  cz 12504  cuz 12768  +crp 12920  ...cfz 13430  ..^cfzo 13573  cexp 13973  chash 14236  Word cword 14408   Σg cgsu 17327  SymGrpcsymg 19153  pmTrspcpmtr 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-xor 1511  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-ot 4596  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-map 8770  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-xnn0 12491  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431  df-fzo 13574  df-seq 13913  df-exp 13974  df-hash 14237  df-word 14409  df-lsw 14457  df-concat 14465  df-s1 14490  df-substr 14535  df-pfx 14565  df-splice 14644  df-s2 14743  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-tset 17157  df-0g 17328  df-gsum 17329  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-efmnd 18684  df-grp 18756  df-minusg 18757  df-subg 18930  df-symg 19154  df-pmtr 19229
This theorem is referenced by:  psgnuni  19286
  Copyright terms: Public domain W3C validator