MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem4 Structured version   Visualization version   GIF version

Theorem psgnunilem4 19403
Description: Lemma for psgnuni 19405. An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
psgnunilem4.g 𝐺 = (SymGrp‘𝐷)
psgnunilem4.t 𝑇 = ran (pmTrsp‘𝐷)
psgnunilem4.d (𝜑𝐷𝑉)
psgnunilem4.w1 (𝜑𝑊 ∈ Word 𝑇)
psgnunilem4.w2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
Assertion
Ref Expression
psgnunilem4 (𝜑 → (-1↑(♯‘𝑊)) = 1)

Proof of Theorem psgnunilem4
Dummy variables 𝑥 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem4.w1 . 2 (𝜑𝑊 ∈ Word 𝑇)
2 psgnunilem4.w2 . 2 (𝜑 → (𝐺 Σg 𝑊) = ( I ↾ 𝐷))
3 wrdfin 14473 . . . . 5 (𝑊 ∈ Word 𝑇𝑊 ∈ Fin)
4 hashcl 14297 . . . . 5 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
51, 3, 43syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6 nn0uz 12811 . . . 4 0 = (ℤ‘0)
75, 6eleqtrdi 2838 . . 3 (𝜑 → (♯‘𝑊) ∈ (ℤ‘0))
8 fveq2 6840 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
9 hash0 14308 . . . . . . . . 9 (♯‘∅) = 0
108, 9eqtrdi 2780 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = 0)
1110oveq2d 7385 . . . . . . 7 (𝑤 = ∅ → (-1↑(♯‘𝑤)) = (-1↑0))
12 neg1cn 12147 . . . . . . . 8 -1 ∈ ℂ
13 exp0 14006 . . . . . . . 8 (-1 ∈ ℂ → (-1↑0) = 1)
1412, 13ax-mp 5 . . . . . . 7 (-1↑0) = 1
1511, 14eqtrdi 2780 . . . . . 6 (𝑤 = ∅ → (-1↑(♯‘𝑤)) = 1)
16152a1d 26 . . . . 5 (𝑤 = ∅ → ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1)))
17 psgnunilem4.g . . . . . . . . . . . . 13 𝐺 = (SymGrp‘𝐷)
18 psgnunilem4.t . . . . . . . . . . . . 13 𝑇 = ran (pmTrsp‘𝐷)
19 simpl1 1192 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝜑)
20 psgnunilem4.d . . . . . . . . . . . . . 14 (𝜑𝐷𝑉)
2119, 20syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝐷𝑉)
22 simpl3l 1229 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
23 eqidd 2730 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (♯‘𝑤) = (♯‘𝑤))
24 wrdfin 14473 . . . . . . . . . . . . . . 15 (𝑤 ∈ Word 𝑇𝑤 ∈ Fin)
2522, 24syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
26 simpl2 1193 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
27 hashnncl 14307 . . . . . . . . . . . . . . 15 (𝑤 ∈ Fin → ((♯‘𝑤) ∈ ℕ ↔ 𝑤 ≠ ∅))
2827biimpar 477 . . . . . . . . . . . . . 14 ((𝑤 ∈ Fin ∧ 𝑤 ≠ ∅) → (♯‘𝑤) ∈ ℕ)
2925, 26, 28syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (♯‘𝑤) ∈ ℕ)
30 simpl3r 1230 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (𝐺 Σg 𝑤) = ( I ↾ 𝐷))
31 fveqeq2 6849 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑤) − 2) ↔ (♯‘𝑦) = ((♯‘𝑤) − 2)))
32 oveq2 7377 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝐺 Σg 𝑥) = (𝐺 Σg 𝑦))
3332eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝐺 Σg 𝑥) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3431, 33anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷))))
3534cbvrexvw 3214 . . . . . . . . . . . . . . . 16 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3635notbii 320 . . . . . . . . . . . . . . 15 (¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3736biimpi 216 . . . . . . . . . . . . . 14 (¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3837adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → ¬ ∃𝑦 ∈ Word 𝑇((♯‘𝑦) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑦) = ( I ↾ 𝐷)))
3917, 18, 21, 22, 23, 29, 30, 38psgnunilem3 19402 . . . . . . . . . . . 12 ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
40 iman 401 . . . . . . . . . . . 12 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) ↔ ¬ ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ ¬ ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4139, 40mpbir 231 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
42 df-rex 3054 . . . . . . . . . . 11 (∃𝑥 ∈ Word 𝑇((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) ↔ ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
4341, 42sylib 218 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
44 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 𝑥 ∈ Word 𝑇)
45 simprrr 781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝐺 Σg 𝑥) = ( I ↾ 𝐷))
4644, 45jca 511 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
47 wrdfin 14473 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word 𝑇𝑥 ∈ Fin)
48 hashcl 14297 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
4944, 47, 483syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) ∈ ℕ0)
50 simp3l 1202 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Word 𝑇)
5150, 24syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ∈ Fin)
52 simp2 1137 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → 𝑤 ≠ ∅)
5351, 52, 28syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (♯‘𝑤) ∈ ℕ)
5453adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℕ)
55 simprrl 780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) = ((♯‘𝑤) − 2))
5654nnred 12177 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℝ)
57 2rp 12932 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
58 ltsubrp 12965 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑤) ∈ ℝ ∧ 2 ∈ ℝ+) → ((♯‘𝑤) − 2) < (♯‘𝑤))
5956, 57, 58sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((♯‘𝑤) − 2) < (♯‘𝑤))
6055, 59eqbrtrd 5124 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) < (♯‘𝑤))
61 elfzo0 13637 . . . . . . . . . . . . . . . . 17 ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) ↔ ((♯‘𝑥) ∈ ℕ0 ∧ (♯‘𝑤) ∈ ℕ ∧ (♯‘𝑥) < (♯‘𝑤)))
6249, 54, 60, 61syl3anbrc 1344 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑥) ∈ (0..^(♯‘𝑤)))
63 id 22 . . . . . . . . . . . . . . . . 17 (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)))
6463com13 88 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → ((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑥)) = 1)))
6546, 62, 64sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑥)) = 1))
6655oveq2d 7385 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑥)) = (-1↑((♯‘𝑤) − 2)))
6712a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ∈ ℂ)
68 neg1ne0 12149 . . . . . . . . . . . . . . . . . . 19 -1 ≠ 0
6968a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → -1 ≠ 0)
70 2z 12541 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
7170a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → 2 ∈ ℤ)
7254nnzd 12532 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (♯‘𝑤) ∈ ℤ)
7367, 69, 71, 72expsubd 14098 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑((♯‘𝑤) − 2)) = ((-1↑(♯‘𝑤)) / (-1↑2)))
74 neg1sqe1 14137 . . . . . . . . . . . . . . . . . . 19 (-1↑2) = 1
7574oveq2i 7380 . . . . . . . . . . . . . . . . . 18 ((-1↑(♯‘𝑤)) / (-1↑2)) = ((-1↑(♯‘𝑤)) / 1)
76 m1expcl 14027 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ ℤ)
7776zcnd 12615 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ ℂ)
7872, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑤)) ∈ ℂ)
7978div1d 11926 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑤)) / 1) = (-1↑(♯‘𝑤)))
8075, 79eqtrid 2776 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑤)) / (-1↑2)) = (-1↑(♯‘𝑤)))
8166, 73, 803eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (-1↑(♯‘𝑥)) = (-1↑(♯‘𝑤)))
8281eqeq1d 2731 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → ((-1↑(♯‘𝑥)) = 1 ↔ (-1↑(♯‘𝑤)) = 1))
8365, 82sylibd 239 . . . . . . . . . . . . . 14 (((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) ∧ (𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))
8483ex 412 . . . . . . . . . . . . 13 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → ((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1)))
8584com23 86 . . . . . . . . . . . 12 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
8685alimdv 1916 . . . . . . . . . . 11 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
87 19.23v 1942 . . . . . . . . . . 11 (∀𝑥((𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1) ↔ (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1))
8886, 87imbitrdi 251 . . . . . . . . . 10 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (∃𝑥(𝑥 ∈ Word 𝑇 ∧ ((♯‘𝑥) = ((♯‘𝑤) − 2) ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))) → (-1↑(♯‘𝑤)) = 1)))
8943, 88mpid 44 . . . . . . . . 9 ((𝜑𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷))) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))
90893exp 1119 . . . . . . . 8 (𝜑 → (𝑤 ≠ ∅ → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → (-1↑(♯‘𝑤)) = 1))))
9190com34 91 . . . . . . 7 (𝜑 → (𝑤 ≠ ∅ → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))))
9291com12 32 . . . . . 6 (𝑤 ≠ ∅ → (𝜑 → (∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))))
9392impd 410 . . . . 5 (𝑤 ≠ ∅ → ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1)))
9416, 93pm2.61ine 3008 . . . 4 ((𝜑 ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))
95943adant2 1131 . . 3 ((𝜑 ∧ (♯‘𝑤) ∈ (0...(♯‘𝑊)) ∧ ∀𝑥((♯‘𝑥) ∈ (0..^(♯‘𝑤)) → ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1))) → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1))
96 eleq1 2816 . . . . 5 (𝑤 = 𝑥 → (𝑤 ∈ Word 𝑇𝑥 ∈ Word 𝑇))
97 oveq2 7377 . . . . . 6 (𝑤 = 𝑥 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑥))
9897eqeq1d 2731 . . . . 5 (𝑤 = 𝑥 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)))
9996, 98anbi12d 632 . . . 4 (𝑤 = 𝑥 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷))))
100 fveq2 6840 . . . . . 6 (𝑤 = 𝑥 → (♯‘𝑤) = (♯‘𝑥))
101100oveq2d 7385 . . . . 5 (𝑤 = 𝑥 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑥)))
102101eqeq1d 2731 . . . 4 (𝑤 = 𝑥 → ((-1↑(♯‘𝑤)) = 1 ↔ (-1↑(♯‘𝑥)) = 1))
10399, 102imbi12d 344 . . 3 (𝑤 = 𝑥 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1) ↔ ((𝑥 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑥) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑥)) = 1)))
104 eleq1 2816 . . . . 5 (𝑤 = 𝑊 → (𝑤 ∈ Word 𝑇𝑊 ∈ Word 𝑇))
105 oveq2 7377 . . . . . 6 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
106105eqeq1d 2731 . . . . 5 (𝑤 = 𝑊 → ((𝐺 Σg 𝑤) = ( I ↾ 𝐷) ↔ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)))
107104, 106anbi12d 632 . . . 4 (𝑤 = 𝑊 → ((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) ↔ (𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷))))
108 fveq2 6840 . . . . . 6 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
109108oveq2d 7385 . . . . 5 (𝑤 = 𝑊 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑊)))
110109eqeq1d 2731 . . . 4 (𝑤 = 𝑊 → ((-1↑(♯‘𝑤)) = 1 ↔ (-1↑(♯‘𝑊)) = 1))
111107, 110imbi12d 344 . . 3 (𝑤 = 𝑊 → (((𝑤 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑤) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑤)) = 1) ↔ ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑊)) = 1)))
1121, 7, 95, 103, 111, 100, 108uzindi 13923 . 2 (𝜑 → ((𝑊 ∈ Word 𝑇 ∧ (𝐺 Σg 𝑊) = ( I ↾ 𝐷)) → (-1↑(♯‘𝑊)) = 1))
1131, 2, 112mp2and 699 1 (𝜑 → (-1↑(♯‘𝑊)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  c0 4292   class class class wbr 5102   I cid 5525  ran crn 5632  cres 5633  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  ..^cfzo 13591  cexp 14002  chash 14271  Word cword 14454   Σg cgsu 17379  SymGrpcsymg 19275  pmTrspcpmtr 19347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-tset 17215  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-efmnd 18772  df-grp 18844  df-minusg 18845  df-subg 19031  df-symg 19276  df-pmtr 19348
This theorem is referenced by:  psgnuni  19405
  Copyright terms: Public domain W3C validator