MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o1gt2 Structured version   Visualization version   GIF version

Theorem nn0o1gt2 16361
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 12507 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnnn0c 12550 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
3 1red 11247 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
4 nn0re 12514 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
53, 4leloed 11389 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
6 1zzd 12626 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
7 nn0z 12616 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 zltp1le 12645 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
96, 7, 8syl2anc 582 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
10 1p1e2 12370 . . . . . . . . . . . . . 14 (1 + 1) = 2
1110breq1i 5156 . . . . . . . . . . . . 13 ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁)
1211a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁))
13 2re 12319 . . . . . . . . . . . . . 14 2 ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
1514, 4leloed 11389 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
169, 12, 153bitrd 304 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
17 olc 866 . . . . . . . . . . . . . 14 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
18172a1d 26 . . . . . . . . . . . . 13 (2 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
19 oveq1 7426 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 + 1) = (2 + 1))
2019oveq1d 7434 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2120eqcoms 2733 . . . . . . . . . . . . . . . . . 18 (2 = 𝑁 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2221adantl 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
23 2p1e3 12387 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
2423oveq1i 7429 . . . . . . . . . . . . . . . . 17 ((2 + 1) / 2) = (3 / 2)
2522, 24eqtrdi 2781 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = (3 / 2))
2625eleq1d 2810 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (3 / 2) ∈ ℕ0))
27 3halfnz 12674 . . . . . . . . . . . . . . . 16 ¬ (3 / 2) ∈ ℤ
28 nn0z 12616 . . . . . . . . . . . . . . . . 17 ((3 / 2) ∈ ℕ0 → (3 / 2) ∈ ℤ)
2928pm2.24d 151 . . . . . . . . . . . . . . . 16 ((3 / 2) ∈ ℕ0 → (¬ (3 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
3027, 29mpi 20 . . . . . . . . . . . . . . 15 ((3 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
3126, 30biimtrdi 252 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
3231expcom 412 . . . . . . . . . . . . 13 (2 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3318, 32jaoi 855 . . . . . . . . . . . 12 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3433com12 32 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((2 < 𝑁 ∨ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3516, 34sylbid 239 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3635com12 32 . . . . . . . . 9 (1 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
37 orc 865 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
3837eqcoms 2733 . . . . . . . . . 10 (1 = 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
39382a1d 26 . . . . . . . . 9 (1 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4036, 39jaoi 855 . . . . . . . 8 ((1 < 𝑁 ∨ 1 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4140com12 32 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
425, 41sylbid 239 . . . . . 6 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4342imp 405 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
442, 43sylbi 216 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
45 oveq1 7426 . . . . . . . 8 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
46 0p1e1 12367 . . . . . . . 8 (0 + 1) = 1
4745, 46eqtrdi 2781 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = 1)
4847oveq1d 7434 . . . . . 6 (𝑁 = 0 → ((𝑁 + 1) / 2) = (1 / 2))
4948eleq1d 2810 . . . . 5 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (1 / 2) ∈ ℕ0))
50 halfnz 12673 . . . . . 6 ¬ (1 / 2) ∈ ℤ
51 nn0z 12616 . . . . . . 7 ((1 / 2) ∈ ℕ0 → (1 / 2) ∈ ℤ)
5251pm2.24d 151 . . . . . 6 ((1 / 2) ∈ ℕ0 → (¬ (1 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
5350, 52mpi 20 . . . . 5 ((1 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
5449, 53biimtrdi 252 . . . 4 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5544, 54jaoi 855 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
561, 55sylbi 216 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5756imp 405 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098   class class class wbr 5149  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281   / cdiv 11903  cn 12245  2c2 12300  3c3 12301  0cn0 12505  cz 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12506  df-z 12592
This theorem is referenced by:  nno  16362  nn0o  16363
  Copyright terms: Public domain W3C validator