MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0o1gt2 Structured version   Visualization version   GIF version

Theorem nn0o1gt2 16418
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 12528 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnnn0c 12571 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
3 1red 11262 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
4 nn0re 12535 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
53, 4leloed 11404 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
6 1zzd 12648 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
7 nn0z 12638 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
8 zltp1le 12667 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
96, 7, 8syl2anc 584 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
10 1p1e2 12391 . . . . . . . . . . . . . 14 (1 + 1) = 2
1110breq1i 5150 . . . . . . . . . . . . 13 ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁)
1211a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁))
13 2re 12340 . . . . . . . . . . . . . 14 2 ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
1514, 4leloed 11404 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
169, 12, 153bitrd 305 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
17 olc 869 . . . . . . . . . . . . . 14 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
18172a1d 26 . . . . . . . . . . . . 13 (2 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
19 oveq1 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 + 1) = (2 + 1))
2019oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2120eqcoms 2745 . . . . . . . . . . . . . . . . . 18 (2 = 𝑁 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2221adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
23 2p1e3 12408 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
2423oveq1i 7441 . . . . . . . . . . . . . . . . 17 ((2 + 1) / 2) = (3 / 2)
2522, 24eqtrdi 2793 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = (3 / 2))
2625eleq1d 2826 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (3 / 2) ∈ ℕ0))
27 3halfnz 12697 . . . . . . . . . . . . . . . 16 ¬ (3 / 2) ∈ ℤ
28 nn0z 12638 . . . . . . . . . . . . . . . . 17 ((3 / 2) ∈ ℕ0 → (3 / 2) ∈ ℤ)
2928pm2.24d 151 . . . . . . . . . . . . . . . 16 ((3 / 2) ∈ ℕ0 → (¬ (3 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
3027, 29mpi 20 . . . . . . . . . . . . . . 15 ((3 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
3126, 30biimtrdi 253 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
3231expcom 413 . . . . . . . . . . . . 13 (2 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3318, 32jaoi 858 . . . . . . . . . . . 12 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3433com12 32 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((2 < 𝑁 ∨ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3516, 34sylbid 240 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3635com12 32 . . . . . . . . 9 (1 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
37 orc 868 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
3837eqcoms 2745 . . . . . . . . . 10 (1 = 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
39382a1d 26 . . . . . . . . 9 (1 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4036, 39jaoi 858 . . . . . . . 8 ((1 < 𝑁 ∨ 1 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4140com12 32 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
425, 41sylbid 240 . . . . . 6 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4342imp 406 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
442, 43sylbi 217 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
45 oveq1 7438 . . . . . . . 8 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
46 0p1e1 12388 . . . . . . . 8 (0 + 1) = 1
4745, 46eqtrdi 2793 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = 1)
4847oveq1d 7446 . . . . . 6 (𝑁 = 0 → ((𝑁 + 1) / 2) = (1 / 2))
4948eleq1d 2826 . . . . 5 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (1 / 2) ∈ ℕ0))
50 halfnz 12696 . . . . . 6 ¬ (1 / 2) ∈ ℤ
51 nn0z 12638 . . . . . . 7 ((1 / 2) ∈ ℕ0 → (1 / 2) ∈ ℤ)
5251pm2.24d 151 . . . . . 6 ((1 / 2) ∈ ℕ0 → (¬ (1 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
5350, 52mpi 20 . . . . 5 ((1 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
5449, 53biimtrdi 253 . . . 4 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5544, 54jaoi 858 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
561, 55sylbi 217 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5756imp 406 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  0cn0 12526  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614
This theorem is referenced by:  nno  16419  nn0o  16420
  Copyright terms: Public domain W3C validator