Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshwsidrepswmod0 | Structured version Visualization version GIF version |
Description: If cyclically shifting a word of length being a prime number results in the word itself, the shift must be either by 0 (modulo the length of the word) or the word must be a "repeated symbol word". (Contributed by AV, 18-May-2018.) (Revised by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
cshwsidrepswmod0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . . 3 ⊢ ((𝐿 mod (♯‘𝑊)) = 0 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))) | |
2 | 1 | 2a1d 26 | . 2 ⊢ ((𝐿 mod (♯‘𝑊)) = 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))) |
3 | 3simpa 1146 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) | |
4 | 3 | ad2antlr 723 | . . . . 5 ⊢ ((((𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ)) |
5 | simplr3 1215 | . . . . 5 ⊢ ((((𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝐿 ∈ ℤ) | |
6 | simpll 763 | . . . . 5 ⊢ ((((𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝐿 mod (♯‘𝑊)) ≠ 0) | |
7 | simpr 484 | . . . . 5 ⊢ ((((𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → (𝑊 cyclShift 𝐿) = 𝑊) | |
8 | cshwsidrepsw 16823 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) → ((𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))) | |
9 | 8 | imp 406 | . . . . 5 ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ) ∧ (𝐿 ∈ ℤ ∧ (𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 cyclShift 𝐿) = 𝑊)) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) |
10 | 4, 5, 6, 7, 9 | syl13anc 1370 | . . . 4 ⊢ ((((𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) |
11 | 10 | olcd 870 | . . 3 ⊢ ((((𝐿 mod (♯‘𝑊)) ≠ 0 ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ)) ∧ (𝑊 cyclShift 𝐿) = 𝑊) → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))) |
12 | 11 | exp31 419 | . 2 ⊢ ((𝐿 mod (♯‘𝑊)) ≠ 0 → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)))))) |
13 | 2, 12 | pm2.61ine 3023 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ ∧ 𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) = 𝑊 → ((𝐿 mod (♯‘𝑊)) = 0 ∨ 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ‘cfv 6447 (class class class)co 7295 0cc0 10899 ℤcz 12347 mod cmo 13617 ♯chash 14072 Word cword 14245 repeatS creps 14509 cyclShift ccsh 14529 ℙcprime 16404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-2o 8318 df-oadd 8321 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-inf 9230 df-dju 9687 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-n0 12262 df-xnn0 12334 df-z 12348 df-uz 12611 df-rp 12759 df-fz 13268 df-fzo 13411 df-fl 13540 df-mod 13618 df-seq 13750 df-exp 13811 df-hash 14073 df-word 14246 df-concat 14302 df-substr 14382 df-pfx 14412 df-reps 14510 df-csh 14530 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-dvds 15992 df-gcd 16230 df-prm 16405 df-phi 16495 |
This theorem is referenced by: cshwshashlem1 16825 |
Copyright terms: Public domain | W3C validator |