Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt14 Structured version   Visualization version   GIF version

Theorem metakunt14 42175
Description: A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt14.1 (𝜑𝑀 ∈ ℕ)
metakunt14.2 (𝜑𝐼 ∈ ℕ)
metakunt14.3 (𝜑𝐼𝑀)
metakunt14.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt14.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
Assertion
Ref Expression
metakunt14 (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ 𝐴 = 𝐶))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑦)

Proof of Theorem metakunt14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metakunt14.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 metakunt14.2 . . . 4 (𝜑𝐼 ∈ ℕ)
3 metakunt14.3 . . . 4 (𝜑𝐼𝑀)
4 metakunt14.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
51, 2, 3, 4metakunt1 42162 . . 3 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
6 metakunt14.5 . . . 4 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
71, 2, 3, 6metakunt2 42163 . . 3 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
81adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
92adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
103adantr 480 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
11 simpr 484 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
128, 9, 10, 4, 6, 11metakunt9 42170 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐴𝑎)) = 𝑎)
1312ralrimiva 3152 . . 3 (𝜑 → ∀𝑎 ∈ (1...𝑀)(𝐶‘(𝐴𝑎)) = 𝑎)
141adantr 480 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
152adantr 480 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
163adantr 480 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝐼𝑀)
17 simpr 484 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝑏 ∈ (1...𝑀))
1814, 15, 16, 4, 6, 17metakunt13 42174 . . . 4 ((𝜑𝑏 ∈ (1...𝑀)) → (𝐴‘(𝐶𝑏)) = 𝑏)
1918ralrimiva 3152 . . 3 (𝜑 → ∀𝑏 ∈ (1...𝑀)(𝐴‘(𝐶𝑏)) = 𝑏)
205, 7, 13, 192fvidf1od 7334 . 2 (𝜑𝐴:(1...𝑀)–1-1-onto→(1...𝑀))
215, 7, 13, 192fvidinvd 7335 . 2 (𝜑𝐴 = 𝐶)
2220, 21jca 511 1 (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ 𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  ccnv 5699  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  metakunt34  42195
  Copyright terms: Public domain W3C validator