Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt14 Structured version   Visualization version   GIF version

Theorem metakunt14 39645
Description: A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt14.1 (𝜑𝑀 ∈ ℕ)
metakunt14.2 (𝜑𝐼 ∈ ℕ)
metakunt14.3 (𝜑𝐼𝑀)
metakunt14.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt14.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
Assertion
Ref Expression
metakunt14 (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ 𝐴 = 𝐶))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑦)

Proof of Theorem metakunt14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metakunt14.1 . . . 4 (𝜑𝑀 ∈ ℕ)
2 metakunt14.2 . . . 4 (𝜑𝐼 ∈ ℕ)
3 metakunt14.3 . . . 4 (𝜑𝐼𝑀)
4 metakunt14.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
51, 2, 3, 4metakunt1 39632 . . 3 (𝜑𝐴:(1...𝑀)⟶(1...𝑀))
6 metakunt14.5 . . . 4 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
71, 2, 3, 6metakunt2 39633 . . 3 (𝜑𝐶:(1...𝑀)⟶(1...𝑀))
81adantr 485 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
92adantr 485 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
103adantr 485 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝐼𝑀)
11 simpr 489 . . . . 5 ((𝜑𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀))
128, 9, 10, 4, 6, 11metakunt9 39640 . . . 4 ((𝜑𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐴𝑎)) = 𝑎)
1312ralrimiva 3111 . . 3 (𝜑 → ∀𝑎 ∈ (1...𝑀)(𝐶‘(𝐴𝑎)) = 𝑎)
141adantr 485 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
152adantr 485 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝐼 ∈ ℕ)
163adantr 485 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝐼𝑀)
17 simpr 489 . . . . 5 ((𝜑𝑏 ∈ (1...𝑀)) → 𝑏 ∈ (1...𝑀))
1814, 15, 16, 4, 6, 17metakunt13 39644 . . . 4 ((𝜑𝑏 ∈ (1...𝑀)) → (𝐴‘(𝐶𝑏)) = 𝑏)
1918ralrimiva 3111 . . 3 (𝜑 → ∀𝑏 ∈ (1...𝑀)(𝐴‘(𝐶𝑏)) = 𝑏)
205, 7, 13, 192fvidf1od 7039 . 2 (𝜑𝐴:(1...𝑀)–1-1-onto→(1...𝑀))
215, 7, 13, 192fvidinvd 7040 . 2 (𝜑𝐴 = 𝐶)
2220, 21jca 516 1 (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ 𝐴 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  ifcif 4413   class class class wbr 5025  cmpt 5105  ccnv 5516  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7143  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925
This theorem is referenced by:  metakunt34  39665
  Copyright terms: Public domain W3C validator