![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt14 | Structured version Visualization version GIF version |
Description: A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.) |
Ref | Expression |
---|---|
metakunt14.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt14.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt14.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt14.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt14.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
Ref | Expression |
---|---|
metakunt14 | ⊢ (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ ◡𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt14.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | metakunt14.2 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
3 | metakunt14.3 | . . . 4 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
4 | metakunt14.4 | . . . 4 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
5 | 1, 2, 3, 4 | metakunt1 41651 | . . 3 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
6 | metakunt14.5 | . . . 4 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
7 | 1, 2, 3, 6 | metakunt2 41652 | . . 3 ⊢ (𝜑 → 𝐶:(1...𝑀)⟶(1...𝑀)) |
8 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
9 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ) |
10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝐼 ≤ 𝑀) |
11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀)) | |
12 | 8, 9, 10, 4, 6, 11 | metakunt9 41659 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐴‘𝑎)) = 𝑎) |
13 | 12 | ralrimiva 3142 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝑀)(𝐶‘(𝐴‘𝑎)) = 𝑎) |
14 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝐼 ∈ ℕ) |
16 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝐼 ≤ 𝑀) |
17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝑏 ∈ (1...𝑀)) | |
18 | 14, 15, 16, 4, 6, 17 | metakunt13 41663 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → (𝐴‘(𝐶‘𝑏)) = 𝑏) |
19 | 18 | ralrimiva 3142 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝑀)(𝐴‘(𝐶‘𝑏)) = 𝑏) |
20 | 5, 7, 13, 19 | 2fvidf1od 7301 | . 2 ⊢ (𝜑 → 𝐴:(1...𝑀)–1-1-onto→(1...𝑀)) |
21 | 5, 7, 13, 19 | 2fvidinvd 7302 | . 2 ⊢ (𝜑 → ◡𝐴 = 𝐶) |
22 | 20, 21 | jca 511 | 1 ⊢ (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ ◡𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ifcif 4524 class class class wbr 5142 ↦ cmpt 5225 ◡ccnv 5671 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 1c1 11133 + caddc 11135 < clt 11272 ≤ cle 11273 − cmin 11468 ℕcn 12236 ...cfz 13510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 |
This theorem is referenced by: metakunt34 41684 |
Copyright terms: Public domain | W3C validator |