| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt14 | Structured version Visualization version GIF version | ||
| Description: A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.) |
| Ref | Expression |
|---|---|
| metakunt14.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| metakunt14.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
| metakunt14.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
| metakunt14.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
| metakunt14.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
| Ref | Expression |
|---|---|
| metakunt14 | ⊢ (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ ◡𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metakunt14.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | metakunt14.2 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
| 3 | metakunt14.3 | . . . 4 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
| 4 | metakunt14.4 | . . . 4 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
| 5 | 1, 2, 3, 4 | metakunt1 42218 | . . 3 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
| 6 | metakunt14.5 | . . . 4 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
| 7 | 1, 2, 3, 6 | metakunt2 42219 | . . 3 ⊢ (𝜑 → 𝐶:(1...𝑀)⟶(1...𝑀)) |
| 8 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
| 9 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ) |
| 10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝐼 ≤ 𝑀) |
| 11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀)) | |
| 12 | 8, 9, 10, 4, 6, 11 | metakunt9 42226 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐴‘𝑎)) = 𝑎) |
| 13 | 12 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝑀)(𝐶‘(𝐴‘𝑎)) = 𝑎) |
| 14 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
| 15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝐼 ∈ ℕ) |
| 16 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝐼 ≤ 𝑀) |
| 17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝑏 ∈ (1...𝑀)) | |
| 18 | 14, 15, 16, 4, 6, 17 | metakunt13 42230 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → (𝐴‘(𝐶‘𝑏)) = 𝑏) |
| 19 | 18 | ralrimiva 3132 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝑀)(𝐴‘(𝐶‘𝑏)) = 𝑏) |
| 20 | 5, 7, 13, 19 | 2fvidf1od 7291 | . 2 ⊢ (𝜑 → 𝐴:(1...𝑀)–1-1-onto→(1...𝑀)) |
| 21 | 5, 7, 13, 19 | 2fvidinvd 7292 | . 2 ⊢ (𝜑 → ◡𝐴 = 𝐶) |
| 22 | 20, 21 | jca 511 | 1 ⊢ (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ ◡𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 ℕcn 12240 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: metakunt34 42251 |
| Copyright terms: Public domain | W3C validator |