![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt14 | Structured version Visualization version GIF version |
Description: A is a primitive permutation that moves the I-th element to the end and C is its inverse that moves the last element back to the I-th position. (Contributed by metakunt, 25-May-2024.) |
Ref | Expression |
---|---|
metakunt14.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt14.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt14.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt14.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt14.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
Ref | Expression |
---|---|
metakunt14 | ⊢ (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ ◡𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt14.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | metakunt14.2 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
3 | metakunt14.3 | . . . 4 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
4 | metakunt14.4 | . . . 4 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
5 | 1, 2, 3, 4 | metakunt1 40985 | . . 3 ⊢ (𝜑 → 𝐴:(1...𝑀)⟶(1...𝑀)) |
6 | metakunt14.5 | . . . 4 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
7 | 1, 2, 3, 6 | metakunt2 40986 | . . 3 ⊢ (𝜑 → 𝐶:(1...𝑀)⟶(1...𝑀)) |
8 | 1 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
9 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝐼 ∈ ℕ) |
10 | 3 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝐼 ≤ 𝑀) |
11 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → 𝑎 ∈ (1...𝑀)) | |
12 | 8, 9, 10, 4, 6, 11 | metakunt9 40993 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (1...𝑀)) → (𝐶‘(𝐴‘𝑎)) = 𝑎) |
13 | 12 | ralrimiva 3147 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝑀)(𝐶‘(𝐴‘𝑎)) = 𝑎) |
14 | 1 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
15 | 2 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝐼 ∈ ℕ) |
16 | 3 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝐼 ≤ 𝑀) |
17 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → 𝑏 ∈ (1...𝑀)) | |
18 | 14, 15, 16, 4, 6, 17 | metakunt13 40997 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (1...𝑀)) → (𝐴‘(𝐶‘𝑏)) = 𝑏) |
19 | 18 | ralrimiva 3147 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ (1...𝑀)(𝐴‘(𝐶‘𝑏)) = 𝑏) |
20 | 5, 7, 13, 19 | 2fvidf1od 7296 | . 2 ⊢ (𝜑 → 𝐴:(1...𝑀)–1-1-onto→(1...𝑀)) |
21 | 5, 7, 13, 19 | 2fvidinvd 7297 | . 2 ⊢ (𝜑 → ◡𝐴 = 𝐶) |
22 | 20, 21 | jca 513 | 1 ⊢ (𝜑 → (𝐴:(1...𝑀)–1-1-onto→(1...𝑀) ∧ ◡𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ifcif 4529 class class class wbr 5149 ↦ cmpt 5232 ◡ccnv 5676 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 1c1 11111 + caddc 11113 < clt 11248 ≤ cle 11249 − cmin 11444 ℕcn 12212 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 |
This theorem is referenced by: metakunt34 41018 |
Copyright terms: Public domain | W3C validator |