MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisj Structured version   Visualization version   GIF version

Theorem dyaddisj 25495
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisj ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisj
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . . . 5 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
21dyadf 25490 . . . 4 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
3 ffn 6652 . . . 4 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
4 ovelrn 7525 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐴 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐)))
5 ovelrn 7525 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
64, 5anbi12d 632 . . . 4 (𝐹 Fn (ℤ × ℕ0) → ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑))))
72, 3, 6mp2b 10 . . 3 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
8 reeanv 3201 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
97, 8bitr4i 278 . 2 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
10 reeanv 3201 . . . 4 (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
11 nn0re 12393 . . . . . . . 8 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
1211ad2antrl 728 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑐 ∈ ℝ)
13 nn0re 12393 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
1413ad2antll 729 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑑 ∈ ℝ)
151dyaddisjlem 25494 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑐𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
16 ancom 460 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ↔ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ))
17 ancom 460 . . . . . . . . . 10 ((𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ↔ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0))
1816, 17anbi12i 628 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ↔ ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)))
191dyaddisjlem 25494 . . . . . . . . 9 ((((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
2018, 19sylanb 581 . . . . . . . 8 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
21 orcom 870 . . . . . . . . . 10 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
22 incom 4160 . . . . . . . . . . 11 (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑)))
2322eqeq1i 2734 . . . . . . . . . 10 ((((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)
2421, 23orbi12i 914 . . . . . . . . 9 (((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
25 df-3or 1087 . . . . . . . . 9 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
26 df-3or 1087 . . . . . . . . 9 ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2724, 25, 263bitr4i 303 . . . . . . . 8 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2820, 27sylib 218 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2912, 14, 15, 28lecasei 11222 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
30 simpl 482 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐴 = (𝑎𝐹𝑐))
3130fveq2d 6826 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐴) = ([,]‘(𝑎𝐹𝑐)))
32 simpr 484 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐵 = (𝑏𝐹𝑑))
3332fveq2d 6826 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐵) = ([,]‘(𝑏𝐹𝑑)))
3431, 33sseq12d 3969 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
3533, 31sseq12d 3969 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐵) ⊆ ([,]‘𝐴) ↔ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
3630fveq2d 6826 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐴) = ((,)‘(𝑎𝐹𝑐)))
3732fveq2d 6826 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐵) = ((,)‘(𝑏𝐹𝑑)))
3836, 37ineq12d 4172 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (((,)‘𝐴) ∩ ((,)‘𝐵)) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))))
3938eqeq1d 2731 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
4034, 35, 393orbi123d 1437 . . . . . 6 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)))
4129, 40syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4241rexlimdvva 3186 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4310, 42biimtrrid 243 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4443rexlimivv 3171 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
459, 44sylbi 217 1 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wrex 3053  cin 3902  wss 3903  c0 4284  cop 4583   class class class wbr 5092   × cxp 5617  ran crn 5620   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  1c1 11010   + caddc 11012  cle 11150   / cdiv 11777  2c2 12183  0cn0 12384  cz 12471  (,)cioo 13248  [,]cicc 13251  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-ioo 13252  df-icc 13255  df-seq 13909  df-exp 13969
This theorem is referenced by:  dyadmbl  25499  mblfinlem2  37658
  Copyright terms: Public domain W3C validator