MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisj Structured version   Visualization version   GIF version

Theorem dyaddisj 25530
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisj ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisj
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . . . 5 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
21dyadf 25525 . . . 4 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
3 ffn 6657 . . . 4 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
4 ovelrn 7528 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐴 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐)))
5 ovelrn 7528 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
64, 5anbi12d 632 . . . 4 (𝐹 Fn (ℤ × ℕ0) → ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑))))
72, 3, 6mp2b 10 . . 3 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
8 reeanv 3204 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
97, 8bitr4i 278 . 2 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
10 reeanv 3204 . . . 4 (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
11 nn0re 12396 . . . . . . . 8 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
1211ad2antrl 728 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑐 ∈ ℝ)
13 nn0re 12396 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
1413ad2antll 729 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑑 ∈ ℝ)
151dyaddisjlem 25529 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑐𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
16 ancom 460 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ↔ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ))
17 ancom 460 . . . . . . . . . 10 ((𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ↔ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0))
1816, 17anbi12i 628 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ↔ ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)))
191dyaddisjlem 25529 . . . . . . . . 9 ((((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
2018, 19sylanb 581 . . . . . . . 8 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
21 orcom 870 . . . . . . . . . 10 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
22 incom 4158 . . . . . . . . . . 11 (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑)))
2322eqeq1i 2736 . . . . . . . . . 10 ((((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)
2421, 23orbi12i 914 . . . . . . . . 9 (((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
25 df-3or 1087 . . . . . . . . 9 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
26 df-3or 1087 . . . . . . . . 9 ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2724, 25, 263bitr4i 303 . . . . . . . 8 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2820, 27sylib 218 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2912, 14, 15, 28lecasei 11225 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
30 simpl 482 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐴 = (𝑎𝐹𝑐))
3130fveq2d 6832 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐴) = ([,]‘(𝑎𝐹𝑐)))
32 simpr 484 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐵 = (𝑏𝐹𝑑))
3332fveq2d 6832 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐵) = ([,]‘(𝑏𝐹𝑑)))
3431, 33sseq12d 3963 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
3533, 31sseq12d 3963 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐵) ⊆ ([,]‘𝐴) ↔ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
3630fveq2d 6832 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐴) = ((,)‘(𝑎𝐹𝑐)))
3732fveq2d 6832 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐵) = ((,)‘(𝑏𝐹𝑑)))
3836, 37ineq12d 4170 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (((,)‘𝐴) ∩ ((,)‘𝐵)) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))))
3938eqeq1d 2733 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
4034, 35, 393orbi123d 1437 . . . . . 6 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)))
4129, 40syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4241rexlimdvva 3189 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4310, 42biimtrrid 243 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4443rexlimivv 3174 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
459, 44sylbi 217 1 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  wrex 3056  cin 3896  wss 3897  c0 4282  cop 4581   class class class wbr 5093   × cxp 5617  ran crn 5620   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  cmpo 7354  cr 11011  1c1 11013   + caddc 11015  cle 11153   / cdiv 11780  2c2 12186  0cn0 12387  cz 12474  (,)cioo 13251  [,]cicc 13254  cexp 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-n0 12388  df-z 12475  df-uz 12739  df-ioo 13255  df-icc 13258  df-seq 13915  df-exp 13975
This theorem is referenced by:  dyadmbl  25534  mblfinlem2  37704
  Copyright terms: Public domain W3C validator