MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisj Structured version   Visualization version   GIF version

Theorem dyaddisj 25586
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisj ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisj
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . . . 5 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
21dyadf 25581 . . . 4 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
3 ffn 6717 . . . 4 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
4 ovelrn 7592 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐴 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐)))
5 ovelrn 7592 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
64, 5anbi12d 632 . . . 4 (𝐹 Fn (ℤ × ℕ0) → ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑))))
72, 3, 6mp2b 10 . . 3 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
8 reeanv 3216 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
97, 8bitr4i 278 . 2 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
10 reeanv 3216 . . . 4 (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
11 nn0re 12519 . . . . . . . 8 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
1211ad2antrl 728 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑐 ∈ ℝ)
13 nn0re 12519 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
1413ad2antll 729 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑑 ∈ ℝ)
151dyaddisjlem 25585 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑐𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
16 ancom 460 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ↔ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ))
17 ancom 460 . . . . . . . . . 10 ((𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ↔ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0))
1816, 17anbi12i 628 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ↔ ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)))
191dyaddisjlem 25585 . . . . . . . . 9 ((((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
2018, 19sylanb 581 . . . . . . . 8 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
21 orcom 870 . . . . . . . . . 10 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
22 incom 4191 . . . . . . . . . . 11 (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑)))
2322eqeq1i 2739 . . . . . . . . . 10 ((((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)
2421, 23orbi12i 914 . . . . . . . . 9 (((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
25 df-3or 1087 . . . . . . . . 9 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
26 df-3or 1087 . . . . . . . . 9 ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2724, 25, 263bitr4i 303 . . . . . . . 8 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2820, 27sylib 218 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2912, 14, 15, 28lecasei 11350 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
30 simpl 482 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐴 = (𝑎𝐹𝑐))
3130fveq2d 6891 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐴) = ([,]‘(𝑎𝐹𝑐)))
32 simpr 484 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐵 = (𝑏𝐹𝑑))
3332fveq2d 6891 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐵) = ([,]‘(𝑏𝐹𝑑)))
3431, 33sseq12d 3999 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
3533, 31sseq12d 3999 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐵) ⊆ ([,]‘𝐴) ↔ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
3630fveq2d 6891 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐴) = ((,)‘(𝑎𝐹𝑐)))
3732fveq2d 6891 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐵) = ((,)‘(𝑏𝐹𝑑)))
3836, 37ineq12d 4203 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (((,)‘𝐴) ∩ ((,)‘𝐵)) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))))
3938eqeq1d 2736 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
4034, 35, 393orbi123d 1436 . . . . . 6 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)))
4129, 40syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4241rexlimdvva 3200 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4310, 42biimtrrid 243 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4443rexlimivv 3188 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
459, 44sylbi 217 1 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1539  wcel 2107  wrex 3059  cin 3932  wss 3933  c0 4315  cop 4614   class class class wbr 5125   × cxp 5665  ran crn 5668   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  cr 11137  1c1 11139   + caddc 11141  cle 11279   / cdiv 11903  2c2 12304  0cn0 12510  cz 12597  (,)cioo 13370  [,]cicc 13373  cexp 14085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-n0 12511  df-z 12598  df-uz 12862  df-ioo 13374  df-icc 13377  df-seq 14026  df-exp 14086
This theorem is referenced by:  dyadmbl  25590  mblfinlem2  37606
  Copyright terms: Public domain W3C validator