MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisj Structured version   Visualization version   GIF version

Theorem dyaddisj 24976
Description: Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisj ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisj
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dyadmbl.1 . . . . 5 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
21dyadf 24971 . . . 4 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
3 ffn 6673 . . . 4 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
4 ovelrn 7535 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐴 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐)))
5 ovelrn 7535 . . . . 5 (𝐹 Fn (ℤ × ℕ0) → (𝐵 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
64, 5anbi12d 632 . . . 4 (𝐹 Fn (ℤ × ℕ0) → ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑))))
72, 3, 6mp2b 10 . . 3 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
8 reeanv 3220 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑎 ∈ ℤ ∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
97, 8bitr4i 278 . 2 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
10 reeanv 3220 . . . 4 (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) ↔ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)))
11 nn0re 12429 . . . . . . . 8 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
1211ad2antrl 727 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑐 ∈ ℝ)
13 nn0re 12429 . . . . . . . 8 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
1413ad2antll 728 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → 𝑑 ∈ ℝ)
151dyaddisjlem 24975 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑐𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
16 ancom 462 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ↔ (𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ))
17 ancom 462 . . . . . . . . . 10 ((𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ↔ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0))
1816, 17anbi12i 628 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ↔ ((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)))
191dyaddisjlem 24975 . . . . . . . . 9 ((((𝑏 ∈ ℤ ∧ 𝑎 ∈ ℤ) ∧ (𝑑 ∈ ℕ0𝑐 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
2018, 19sylanb 582 . . . . . . . 8 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
21 orcom 869 . . . . . . . . . 10 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
22 incom 4166 . . . . . . . . . . 11 (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑)))
2322eqeq1i 2742 . . . . . . . . . 10 ((((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)
2421, 23orbi12i 914 . . . . . . . . 9 (((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
25 df-3or 1089 . . . . . . . . 9 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅))
26 df-3or 1089 . . . . . . . . 9 ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅) ↔ ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2724, 25, 263bitr4i 303 . . . . . . . 8 ((([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ (((,)‘(𝑏𝐹𝑑)) ∩ ((,)‘(𝑎𝐹𝑐))) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2820, 27sylib 217 . . . . . . 7 ((((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) ∧ 𝑑𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
2912, 14, 15, 28lecasei 11268 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
30 simpl 484 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐴 = (𝑎𝐹𝑐))
3130fveq2d 6851 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐴) = ([,]‘(𝑎𝐹𝑐)))
32 simpr 486 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → 𝐵 = (𝑏𝐹𝑑))
3332fveq2d 6851 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ([,]‘𝐵) = ([,]‘(𝑏𝐹𝑑)))
3431, 33sseq12d 3982 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
3533, 31sseq12d 3982 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐵) ⊆ ([,]‘𝐴) ↔ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐))))
3630fveq2d 6851 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐴) = ((,)‘(𝑎𝐹𝑐)))
3732fveq2d 6851 . . . . . . . . 9 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((,)‘𝐵) = ((,)‘(𝑏𝐹𝑑)))
3836, 37ineq12d 4178 . . . . . . . 8 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (((,)‘𝐴) ∩ ((,)‘𝐵)) = (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))))
3938eqeq1d 2739 . . . . . . 7 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅ ↔ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅))
4034, 35, 393orbi123d 1436 . . . . . 6 ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → ((([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) ∨ ([,]‘(𝑏𝐹𝑑)) ⊆ ([,]‘(𝑎𝐹𝑐)) ∨ (((,)‘(𝑎𝐹𝑐)) ∩ ((,)‘(𝑏𝐹𝑑))) = ∅)))
4129, 40syl5ibrcom 247 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → ((𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4241rexlimdvva 3206 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℕ0𝑑 ∈ ℕ0 (𝐴 = (𝑎𝐹𝑐) ∧ 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4310, 42biimtrrid 242 . . 3 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)))
4443rexlimivv 3197 . 2 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (∃𝑐 ∈ ℕ0 𝐴 = (𝑎𝐹𝑐) ∧ ∃𝑑 ∈ ℕ0 𝐵 = (𝑏𝐹𝑑)) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
459, 44sylbi 216 1 ((𝐴 ∈ ran 𝐹𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3o 1087   = wceq 1542  wcel 2107  wrex 3074  cin 3914  wss 3915  c0 4287  cop 4597   class class class wbr 5110   × cxp 5636  ran crn 5639   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  cmpo 7364  cr 11057  1c1 11059   + caddc 11061  cle 11197   / cdiv 11819  2c2 12215  0cn0 12420  cz 12506  (,)cioo 13271  [,]cicc 13274  cexp 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-ioo 13275  df-icc 13278  df-seq 13914  df-exp 13975
This theorem is referenced by:  dyadmbl  24980  mblfinlem2  36145
  Copyright terms: Public domain W3C validator