MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdim2 Structured version   Visualization version   GIF version

Theorem axlowdim2 27328
Description: The lower two-dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.)
Assertion
Ref Expression
axlowdim2 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))
Distinct variable group:   𝑥,𝑁,𝑦,𝑧

Proof of Theorem axlowdim2
StepHypRef Expression
1 0re 10977 . . 3 0 ∈ ℝ
21, 1axlowdimlem5 27314 . 2 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
3 1re 10975 . . 3 1 ∈ ℝ
43, 1axlowdimlem5 27314 . 2 (𝑁 ∈ (ℤ‘2) → ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
51, 3axlowdimlem5 27314 . . 3 (𝑁 ∈ (ℤ‘2) → ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁))
6 eqid 2738 . . . 4 ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
7 eqid 2738 . . . 4 ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))
8 eqid 2738 . . . 4 ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))
96, 7, 8axlowdimlem6 27315 . . 3 (𝑁 ∈ (ℤ‘2) → ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
10 opeq2 4805 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩)
1110breq2d 5086 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩))
12 opeq1 4804 . . . . . . 7 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ = ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
1312breq2d 5086 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
14 breq1 5077 . . . . . 6 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
1511, 13, 143orbi123d 1434 . . . . 5 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
1615notbid 318 . . . 4 (𝑧 = ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
1716rspcev 3561 . . 3 ((({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ ({⟨1, 0⟩, ⟨2, 1⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)) → ∃𝑧 ∈ (𝔼‘𝑁) ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
185, 9, 17syl2anc 584 . 2 (𝑁 ∈ (ℤ‘2) → ∃𝑧 ∈ (𝔼‘𝑁) ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
19 breq1 5077 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑥 Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩))
20 opeq2 4805 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑧, 𝑥⟩ = ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
2120breq2d 5086 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, 𝑥⟩ ↔ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
22 opeq1 4804 . . . . . . 7 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑥, 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)
2322breq2d 5086 . . . . . 6 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨𝑥, 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩))
2419, 21, 233orbi123d 1434 . . . . 5 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
2524notbid 318 . . . 4 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
2625rexbidv 3226 . . 3 (𝑥 = ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩) ↔ ∃𝑧 ∈ (𝔼‘𝑁) ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩)))
27 opeq1 4804 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨𝑦, 𝑧⟩ = ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩)
2827breq2d 5086 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ↔ ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩))
29 breq1 5077 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ↔ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
30 opeq2 4805 . . . . . . 7 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ = ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)
3130breq2d 5086 . . . . . 6 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩ ↔ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩))
3228, 29, 313orbi123d 1434 . . . . 5 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
3332notbid 318 . . . 4 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
3433rexbidv 3226 . . 3 (𝑦 = ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) → (∃𝑧 ∈ (𝔼‘𝑁) ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑦⟩) ↔ ∃𝑧 ∈ (𝔼‘𝑁) ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)))
3526, 34rspc2ev 3572 . 2 ((({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) ∈ (𝔼‘𝑁) ∧ ∃𝑧 ∈ (𝔼‘𝑁) ¬ (({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), 𝑧⟩ ∨ ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})) Btwn ⟨𝑧, ({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩ ∨ 𝑧 Btwn ⟨({⟨1, 0⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0})), ({⟨1, 1⟩, ⟨2, 0⟩} ∪ ((3...𝑁) × {0}))⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))
362, 4, 18, 35syl3anc 1370 1 (𝑁 ∈ (ℤ‘2) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁) ¬ (𝑥 Btwn ⟨𝑦, 𝑧⟩ ∨ 𝑦 Btwn ⟨𝑧, 𝑥⟩ ∨ 𝑧 Btwn ⟨𝑥, 𝑦⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3o 1085   = wceq 1539  wcel 2106  wrex 3065  cun 3885  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  2c2 12028  3c3 12029  cuz 12582  ...cfz 13239  𝔼cee 27256   Btwn cbtwn 27257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-ee 27259  df-btwn 27260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator