MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltleletr Structured version   Visualization version   GIF version

Theorem ltleletr 10413
Description: Transitive law, weaker form of ltletr 10412. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
ltleletr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ltleletr
StepHypRef Expression
1 3simpb 1173 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ))
2 ltletr 10412 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
3 ltle 10409 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶𝐴𝐶))
41, 2, 3sylsyld 61 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100  wcel 2156   class class class wbr 4842  cr 10218   < clt 10357  cle 10358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2782  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5094  ax-un 7177  ax-resscn 10276  ax-pre-lttri 10293  ax-pre-lttrn 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2791  df-cleq 2797  df-clel 2800  df-nfc 2935  df-ne 2977  df-nel 3080  df-ral 3099  df-rex 3100  df-rab 3103  df-v 3391  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4115  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5217  df-xp 5315  df-rel 5316  df-cnv 5317  df-co 5318  df-dm 5319  df-rn 5320  df-res 5321  df-ima 5322  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-er 7977  df-en 8191  df-dom 8192  df-sdom 8193  df-pnf 10359  df-mnf 10360  df-xr 10361  df-ltxr 10362  df-le 10363
This theorem is referenced by:  nn0ge2m1nn  11624  lbzbi  11993  hashge2el2dif  13477  wrdlenge2n0  13551  prmgaplem6  15975  chfacfscmul0  20874  chfacfpmmul0  20878  icoopnst  22949  gausslemma2dlem3  25305  gausslemma2dlem4  25306  ltflcei  33708  pfx2  41985  nnsum4primesevenALTV  42262  m1modmmod  42882
  Copyright terms: Public domain W3C validator