MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flimlem Structured version   Visualization version   GIF version

Theorem mbfi1flimlem 25222
Description: Lemma for mbfi1flim 25223. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flimlem.2 (𝜑𝐹:ℝ⟶ℝ)
Assertion
Ref Expression
mbfi1flimlem (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flimlem
Dummy variables 𝑦 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1flimlem.2 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
21ffvelcdmda 7082 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31feqmptd 6956 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4 mbfi1flim.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
53, 4eqeltrrd 2835 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
62, 5mbfpos 25150 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) ∈ MblFn)
7 0re 11212 . . . . . 6 0 ∈ ℝ
8 ifcl 4572 . . . . . 6 (((𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
92, 7, 8sylancl 587 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
10 max1 13160 . . . . . 6 ((0 ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
117, 2, 10sylancr 588 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
12 elrege0 13427 . . . . 5 (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)))
139, 11, 12sylanbrc 584 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞))
1413fmpttd 7110 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
156, 14mbfi1fseq 25221 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
162renegcld 11637 . . . 4 ((𝜑𝑦 ∈ ℝ) → -(𝐹𝑦) ∈ ℝ)
172, 5mbfneg 25149 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ -(𝐹𝑦)) ∈ MblFn)
1816, 17mbfpos 25150 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) ∈ MblFn)
19 ifcl 4572 . . . . . 6 ((-(𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
2016, 7, 19sylancl 587 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
21 max1 13160 . . . . . 6 ((0 ∈ ℝ ∧ -(𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
227, 16, 21sylancr 588 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
23 elrege0 13427 . . . . 5 (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)))
2420, 22, 23sylanbrc 584 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞))
2524fmpttd 7110 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
2618, 25mbfi1fseq 25221 . 2 (𝜑 → ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
27 exdistrv 1960 . . 3 (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
28 3simpb 1150 . . . . . . 7 ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) → (𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
29 3simpb 1150 . . . . . . 7 ((:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
3028, 29anim12i 614 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
31 an4 655 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
3230, 31sylib 217 . . . . 5 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
33 r19.26 3112 . . . . . . 7 (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
34 i1fsub 25208 . . . . . . . . . 10 ((𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1) → (𝑥f𝑦) ∈ dom ∫1)
3534adantl 483 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ (𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1)) → (𝑥f𝑦) ∈ dom ∫1)
36 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓:ℕ⟶dom ∫1)
37 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → :ℕ⟶dom ∫1)
38 nnex 12214 . . . . . . . . . 10 ℕ ∈ V
3938a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ℕ ∈ V)
40 inidm 4217 . . . . . . . . 9 (ℕ ∩ ℕ) = ℕ
4135, 36, 37, 39, 39, 40off 7683 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (𝑓ff):ℕ⟶dom ∫1)
42 fveq2 6888 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4342breq2d 5159 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ (𝐹𝑦) ↔ 0 ≤ (𝐹𝑥)))
4443, 42ifbieq1d 4551 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
45 eqid 2733 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
46 fvex 6901 . . . . . . . . . . . . . . 15 (𝐹𝑥) ∈ V
47 c0ex 11204 . . . . . . . . . . . . . . 15 0 ∈ V
4846, 47ifex 4577 . . . . . . . . . . . . . 14 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
4944, 45, 48fvmpt 6994 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
5049breq2d 5159 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
5142negeqd 11450 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
5251breq2d 5159 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ -(𝐹𝑦) ↔ 0 ≤ -(𝐹𝑥)))
5352, 51ifbieq1d 4551 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
54 eqid 2733 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
55 negex 11454 . . . . . . . . . . . . . . 15 -(𝐹𝑥) ∈ V
5655, 47ifex 4577 . . . . . . . . . . . . . 14 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
5753, 54, 56fvmpt 6994 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
5857breq2d 5159 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
5950, 58anbi12d 632 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6059adantl 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
61 nnuz 12861 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
62 1zzd 12589 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → 1 ∈ ℤ)
63 simprl 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
6438mptex 7220 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ∈ V)
66 simprr 772 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6736ffvelcdmda 7082 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom ∫1)
68 i1ff 25175 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑛) ∈ dom ∫1 → (𝑓𝑛):ℝ⟶ℝ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛):ℝ⟶ℝ)
7069ffvelcdmda 7082 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7170an32s 651 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7271recnd 11238 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℂ)
7372fmpttd 7110 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7473adantr 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7574ffvelcdmda 7082 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) ∈ ℂ)
7637ffvelcdmda 7082 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛) ∈ dom ∫1)
77 i1ff 25175 . . . . . . . . . . . . . . . . . . . 20 ((𝑛) ∈ dom ∫1 → (𝑛):ℝ⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛):ℝ⟶ℝ)
7978ffvelcdmda 7082 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛)‘𝑥) ∈ ℝ)
8079an32s 651 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℝ)
8180recnd 11238 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℂ)
8281fmpttd 7110 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8382adantr 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8483ffvelcdmda 7082 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) ∈ ℂ)
8536ffnd 6715 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓 Fn ℕ)
8637ffnd 6715 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → Fn ℕ)
87 eqidd 2734 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
88 eqidd 2734 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) = (𝑘))
8985, 86, 39, 39, 40, 87, 88ofval 7676 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ((𝑓ff)‘𝑘) = ((𝑓𝑘) ∘f − (𝑘)))
9089fveq1d 6890 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘f − (𝑘))‘𝑥))
9190adantr 482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘f − (𝑘))‘𝑥))
9236ffvelcdmda 7082 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ dom ∫1)
93 i1ff 25175 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ dom ∫1 → (𝑓𝑘):ℝ⟶ℝ)
94 ffn 6714 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘):ℝ⟶ℝ → (𝑓𝑘) Fn ℝ)
9592, 93, 943syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) Fn ℝ)
9637ffvelcdmda 7082 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) ∈ dom ∫1)
97 i1ff 25175 . . . . . . . . . . . . . . . . . . 19 ((𝑘) ∈ dom ∫1 → (𝑘):ℝ⟶ℝ)
98 ffn 6714 . . . . . . . . . . . . . . . . . . 19 ((𝑘):ℝ⟶ℝ → (𝑘) Fn ℝ)
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) Fn ℝ)
100 reex 11197 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ V
101100a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ℝ ∈ V)
102 inidm 4217 . . . . . . . . . . . . . . . . . 18 (ℝ ∩ ℝ) = ℝ
103 eqidd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑘)‘𝑥) = ((𝑓𝑘)‘𝑥))
104 eqidd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑘)‘𝑥) = ((𝑘)‘𝑥))
10595, 99, 101, 101, 102, 103, 104ofval 7676 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓𝑘) ∘f − (𝑘))‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
10691, 105eqtrd 2773 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
107106an32s 651 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
108 fveq2 6888 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓ff)‘𝑛) = ((𝑓ff)‘𝑘))
109108fveq1d 6890 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((𝑓ff)‘𝑛)‘𝑥) = (((𝑓ff)‘𝑘)‘𝑥))
110 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))
111 fvex 6901 . . . . . . . . . . . . . . . . 17 (((𝑓ff)‘𝑘)‘𝑥) ∈ V
112109, 110, 111fvmpt 6994 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑓ff)‘𝑘)‘𝑥))
113112adantl 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑓ff)‘𝑘)‘𝑥))
114 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
115114fveq1d 6890 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑘)‘𝑥))
116 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))
117 fvex 6901 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑘)‘𝑥) ∈ V
118115, 116, 117fvmpt 6994 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) = ((𝑓𝑘)‘𝑥))
119 fveq2 6888 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑛) = (𝑘))
120119fveq1d 6890 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑛)‘𝑥) = ((𝑘)‘𝑥))
121 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))
122 fvex 6901 . . . . . . . . . . . . . . . . . 18 ((𝑘)‘𝑥) ∈ V
123120, 121, 122fvmpt 6994 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) = ((𝑘)‘𝑥))
124118, 123oveq12d 7422 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
125124adantl 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
126107, 113, 1253eqtr4d 2783 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
127126adantlr 714 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
12861, 62, 63, 65, 66, 75, 84, 127climsub 15574 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
1291adantr 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝐹:ℝ⟶ℝ)
130129ffvelcdmda 7082 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
131 max0sub 13171 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ ℝ → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
133132adantr 482 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
134128, 133breqtrd 5173 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))
135134ex 414 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
13660, 135sylbid 239 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
137136ralimdva 3168 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
138 ovex 7437 . . . . . . . . 9 (𝑓ff) ∈ V
139 feq1 6695 . . . . . . . . . 10 (𝑔 = (𝑓ff) → (𝑔:ℕ⟶dom ∫1 ↔ (𝑓ff):ℕ⟶dom ∫1))
140 fveq1 6887 . . . . . . . . . . . . . 14 (𝑔 = (𝑓ff) → (𝑔𝑛) = ((𝑓ff)‘𝑛))
141140fveq1d 6890 . . . . . . . . . . . . 13 (𝑔 = (𝑓ff) → ((𝑔𝑛)‘𝑥) = (((𝑓ff)‘𝑛)‘𝑥))
142141mpteq2dv 5249 . . . . . . . . . . . 12 (𝑔 = (𝑓ff) → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)))
143142breq1d 5157 . . . . . . . . . . 11 (𝑔 = (𝑓ff) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
144143ralbidv 3178 . . . . . . . . . 10 (𝑔 = (𝑓ff) → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
145139, 144anbi12d 632 . . . . . . . . 9 (𝑔 = (𝑓ff) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ ((𝑓ff):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
146138, 145spcev 3596 . . . . . . . 8 (((𝑓ff):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
14741, 137, 146syl6an 683 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
14833, 147biimtrrid 242 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
149148expimpd 455 . . . . 5 (𝜑 → (((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15032, 149syl5 34 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
151150exlimdvv 1938 . . 3 (𝜑 → (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15227, 151biimtrrid 242 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15315, 26, 152mp2and 698 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3062  Vcvv 3475  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  f cof 7663  r cofr 7664  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11241  cle 11245  cmin 11440  -cneg 11441  cn 12208  [,)cico 13322  cli 15424  MblFncmbf 25113  1citg1 25114  0𝑝c0p 25168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-rest 17364  df-topgen 17385  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-top 22378  df-topon 22395  df-bases 22431  df-cmp 22873  df-ovol 24963  df-vol 24964  df-mbf 25118  df-itg1 25119  df-0p 25169
This theorem is referenced by:  mbfi1flim  25223
  Copyright terms: Public domain W3C validator