Step | Hyp | Ref
| Expression |
1 | | mbfi1flimlem.2 |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | 1 | ffvelrnda 6943 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
3 | 1 | feqmptd 6819 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
4 | | mbfi1flim.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ MblFn) |
5 | 3, 4 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ∈ MblFn) |
6 | 2, 5 | mbfpos 24720 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0)) ∈ MblFn) |
7 | | 0re 10908 |
. . . . . 6
⊢ 0 ∈
ℝ |
8 | | ifcl 4501 |
. . . . . 6
⊢ (((𝐹‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ ℝ) |
9 | 2, 7, 8 | sylancl 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ ℝ) |
10 | | max1 12848 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ (𝐹‘𝑦) ∈ ℝ) → 0 ≤ if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0)) |
11 | 7, 2, 10 | sylancr 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0)) |
12 | | elrege0 13115 |
. . . . 5
⊢ (if(0
≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0))) |
13 | 9, 11, 12 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ (0[,)+∞)) |
14 | 13 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦),
0)):ℝ⟶(0[,)+∞)) |
15 | 6, 14 | mbfi1fseq 24791 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥))) |
16 | 2 | renegcld 11332 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → -(𝐹‘𝑦) ∈ ℝ) |
17 | 2, 5 | mbfneg 24719 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ -(𝐹‘𝑦)) ∈ MblFn) |
18 | 16, 17 | mbfpos 24720 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0)) ∈ MblFn) |
19 | | ifcl 4501 |
. . . . . 6
⊢ ((-(𝐹‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ ℝ) |
20 | 16, 7, 19 | sylancl 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ ℝ) |
21 | | max1 12848 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ -(𝐹‘𝑦) ∈ ℝ) → 0 ≤ if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0)) |
22 | 7, 16, 21 | sylancr 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0)) |
23 | | elrege0 13115 |
. . . . 5
⊢ (if(0
≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0))) |
24 | 20, 22, 23 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ (0[,)+∞)) |
25 | 24 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦),
0)):ℝ⟶(0[,)+∞)) |
26 | 18, 25 | mbfi1fseq 24791 |
. 2
⊢ (𝜑 → ∃ℎ(ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) |
27 | | exdistrv 1960 |
. . 3
⊢
(∃𝑓∃ℎ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ ∃ℎ(ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
28 | | 3simpb 1147 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) → (𝑓:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥))) |
29 | | 3simpb 1147 |
. . . . . . 7
⊢ ((ℎ:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → (ℎ:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) |
30 | 28, 29 | anim12i 612 |
. . . . . 6
⊢ (((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
31 | | an4 652 |
. . . . . 6
⊢ (((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) ↔ ((𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
32 | 30, 31 | sylib 217 |
. . . . 5
⊢ (((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
33 | | r19.26 3094 |
. . . . . . 7
⊢
(∀𝑥 ∈
ℝ ((𝑛 ∈ ℕ
↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) ↔ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) |
34 | | i1fsub 24778 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom ∫1
∧ 𝑦 ∈ dom
∫1) → (𝑥 ∘f − 𝑦) ∈ dom
∫1) |
35 | 34 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ (𝑥 ∈ dom ∫1 ∧ 𝑦 ∈ dom ∫1))
→ (𝑥
∘f − 𝑦) ∈ dom
∫1) |
36 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → 𝑓:ℕ⟶dom
∫1) |
37 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ℎ:ℕ⟶dom
∫1) |
38 | | nnex 11909 |
. . . . . . . . . 10
⊢ ℕ
∈ V |
39 | 38 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ℕ ∈ V) |
40 | | inidm 4149 |
. . . . . . . . 9
⊢ (ℕ
∩ ℕ) = ℕ |
41 | 35, 36, 37, 39, 39, 40 | off 7529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → (𝑓 ∘f ∘f
− ℎ):ℕ⟶dom
∫1) |
42 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
43 | 42 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (0 ≤ (𝐹‘𝑦) ↔ 0 ≤ (𝐹‘𝑥))) |
44 | 43, 42 | ifbieq1d 4480 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) = if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
45 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ ↦ if(0
≤ (𝐹‘𝑦), (𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0)) |
46 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘𝑥) ∈ V |
47 | | c0ex 10900 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
48 | 46, 47 | ifex 4506 |
. . . . . . . . . . . . . 14
⊢ if(0 ≤
(𝐹‘𝑥), (𝐹‘𝑥), 0) ∈ V |
49 | 44, 45, 48 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0
≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) = if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
50 | 49 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0))) |
51 | 42 | negeqd 11145 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → -(𝐹‘𝑦) = -(𝐹‘𝑥)) |
52 | 51 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (0 ≤ -(𝐹‘𝑦) ↔ 0 ≤ -(𝐹‘𝑥))) |
53 | 52, 51 | ifbieq1d 4480 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) = if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) |
54 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ ↦ if(0
≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0)) |
55 | | negex 11149 |
. . . . . . . . . . . . . . 15
⊢ -(𝐹‘𝑥) ∈ V |
56 | 55, 47 | ifex 4506 |
. . . . . . . . . . . . . 14
⊢ if(0 ≤
-(𝐹‘𝑥), -(𝐹‘𝑥), 0) ∈ V |
57 | 53, 54, 56 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0
≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥) = if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) |
58 | 57 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) |
59 | 50, 58 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)))) |
60 | 59 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)))) |
61 | | nnuz 12550 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
62 | | 1zzd 12281 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → 1 ∈
ℤ) |
63 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
64 | 38 | mptex 7081 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦ (((𝑓 ∘f
∘f − ℎ)‘𝑛)‘𝑥)) ∈ V |
65 | 64 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ∈ V) |
66 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) |
67 | 36 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (𝑓‘𝑛) ∈ dom
∫1) |
68 | | i1ff 24745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑛) ∈ dom ∫1 → (𝑓‘𝑛):ℝ⟶ℝ) |
69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (𝑓‘𝑛):ℝ⟶ℝ) |
70 | 69 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((𝑓‘𝑛)‘𝑥) ∈ ℝ) |
71 | 70 | an32s 648 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((𝑓‘𝑛)‘𝑥) ∈ ℝ) |
72 | 71 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((𝑓‘𝑛)‘𝑥) ∈ ℂ) |
73 | 72 | fmpttd 6971 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)):ℕ⟶ℂ) |
74 | 73 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)):ℕ⟶ℂ) |
75 | 74 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶dom
∫1 ∧ ℎ:ℕ⟶dom ∫1)) ∧
𝑥 ∈ ℝ) ∧
((𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) ∈ ℂ) |
76 | 37 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (ℎ‘𝑛) ∈ dom
∫1) |
77 | | i1ff 24745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ‘𝑛) ∈ dom ∫1 → (ℎ‘𝑛):ℝ⟶ℝ) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (ℎ‘𝑛):ℝ⟶ℝ) |
79 | 78 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((ℎ‘𝑛)‘𝑥) ∈ ℝ) |
80 | 79 | an32s 648 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((ℎ‘𝑛)‘𝑥) ∈ ℝ) |
81 | 80 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((ℎ‘𝑛)‘𝑥) ∈ ℂ) |
82 | 81 | fmpttd 6971 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (𝑛
∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)):ℕ⟶ℂ) |
83 | 82 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)):ℕ⟶ℂ) |
84 | 83 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶dom
∫1 ∧ ℎ:ℕ⟶dom ∫1)) ∧
𝑥 ∈ ℝ) ∧
((𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘) ∈ ℂ) |
85 | 36 | ffnd 6585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → 𝑓 Fn ℕ) |
86 | 37 | ffnd 6585 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ℎ
Fn ℕ) |
87 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) |
88 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (ℎ‘𝑘) = (ℎ‘𝑘)) |
89 | 85, 86, 39, 39, 40, 87, 88 | ofval 7522 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → ((𝑓
∘f ∘f − ℎ)‘𝑘) = ((𝑓‘𝑘) ∘f − (ℎ‘𝑘))) |
90 | 89 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (((𝑓
∘f ∘f − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘) ∘f − (ℎ‘𝑘))‘𝑥)) |
91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → (((𝑓
∘f ∘f − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘) ∘f − (ℎ‘𝑘))‘𝑥)) |
92 | 36 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (𝑓‘𝑘) ∈ dom
∫1) |
93 | | i1ff 24745 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑘) ∈ dom ∫1 → (𝑓‘𝑘):ℝ⟶ℝ) |
94 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑘):ℝ⟶ℝ → (𝑓‘𝑘) Fn ℝ) |
95 | 92, 93, 94 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (𝑓‘𝑘) Fn ℝ) |
96 | 37 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (ℎ‘𝑘) ∈ dom
∫1) |
97 | | i1ff 24745 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ‘𝑘) ∈ dom ∫1 → (ℎ‘𝑘):ℝ⟶ℝ) |
98 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ‘𝑘):ℝ⟶ℝ → (ℎ‘𝑘) Fn ℝ) |
99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (ℎ‘𝑘) Fn ℝ) |
100 | | reex 10893 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
∈ V |
101 | 100 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → ℝ ∈ V) |
102 | | inidm 4149 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℝ
∩ ℝ) = ℝ |
103 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((𝑓‘𝑘)‘𝑥) = ((𝑓‘𝑘)‘𝑥)) |
104 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((ℎ‘𝑘)‘𝑥) = ((ℎ‘𝑘)‘𝑥)) |
105 | 95, 99, 101, 101, 102, 103, 104 | ofval 7522 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → (((𝑓‘𝑘) ∘f − (ℎ‘𝑘))‘𝑥) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
106 | 91, 105 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → (((𝑓
∘f ∘f − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
107 | 106 | an32s 648 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → (((𝑓
∘f ∘f − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
108 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((𝑓 ∘f ∘f
− ℎ)‘𝑛) = ((𝑓 ∘f ∘f
− ℎ)‘𝑘)) |
109 | 108 | fveq1d 6758 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥) = (((𝑓 ∘f ∘f
− ℎ)‘𝑘)‘𝑥)) |
110 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ ↦ (((𝑓 ∘f
∘f − ℎ)‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) |
111 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∘f
∘f − ℎ)‘𝑘)‘𝑥) ∈ V |
112 | 109, 110,
111 | fvmpt 6857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑓 ∘f
∘f − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑓 ∘f ∘f
− ℎ)‘𝑘)‘𝑥)) |
113 | 112 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (((𝑓
∘f ∘f − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑓 ∘f ∘f
− ℎ)‘𝑘)‘𝑥)) |
114 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (𝑓‘𝑛) = (𝑓‘𝑘)) |
115 | 114 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((𝑓‘𝑛)‘𝑥) = ((𝑓‘𝑘)‘𝑥)) |
116 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) |
117 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑘)‘𝑥) ∈ V |
118 | 115, 116,
117 | fvmpt 6857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) = ((𝑓‘𝑘)‘𝑥)) |
119 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (ℎ‘𝑛) = (ℎ‘𝑘)) |
120 | 119 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((ℎ‘𝑛)‘𝑥) = ((ℎ‘𝑘)‘𝑥)) |
121 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) |
122 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ‘𝑘)‘𝑥) ∈ V |
123 | 120, 121,
122 | fvmpt 6857 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘) = ((ℎ‘𝑘)‘𝑥)) |
124 | 118, 123 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘)) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
125 | 124 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘)) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
126 | 107, 113,
125 | 3eqtr4d 2788 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (((𝑓
∘f ∘f − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘))) |
127 | 126 | adantlr 711 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶dom
∫1 ∧ ℎ:ℕ⟶dom ∫1)) ∧
𝑥 ∈ ℝ) ∧
((𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘))) |
128 | 61, 62, 63, 65, 66, 75, 84, 127 | climsub 15271 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) |
129 | 1 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → 𝐹:ℝ⟶ℝ) |
130 | 129 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
131 | | max0sub 12859 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) ∈ ℝ → (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) = (𝐹‘𝑥)) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) = (𝐹‘𝑥)) |
133 | 132 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) = (𝐹‘𝑥)) |
134 | 128, 133 | breqtrd 5096 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
135 | 134 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
136 | 60, 135 | sylbid 239 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
137 | 136 | ralimdva 3102 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
138 | | ovex 7288 |
. . . . . . . . 9
⊢ (𝑓 ∘f
∘f − ℎ) ∈ V |
139 | | feq1 6565 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) → (𝑔:ℕ⟶dom
∫1 ↔ (𝑓
∘f ∘f − ℎ):ℕ⟶dom
∫1)) |
140 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) → (𝑔‘𝑛) = ((𝑓 ∘f ∘f
− ℎ)‘𝑛)) |
141 | 140 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) → ((𝑔‘𝑛)‘𝑥) = (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) |
142 | 141 | mpteq2dv 5172 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) → (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥))) |
143 | 142 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) → ((𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
144 | 143 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) →
(∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓 ∘f ∘f
− ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
145 | 139, 144 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ∘f ∘f
− ℎ) → ((𝑔:ℕ⟶dom
∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ↔ ((𝑓 ∘f ∘f
− ℎ):ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
(((𝑓 ∘f
∘f − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
146 | 138, 145 | spcev 3535 |
. . . . . . . 8
⊢ (((𝑓 ∘f
∘f − ℎ):ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
(((𝑓 ∘f
∘f − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
147 | 41, 137, 146 | syl6an 680 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
148 | 33, 147 | syl5bir 242 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
149 | 148 | expimpd 453 |
. . . . 5
⊢ (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
150 | 32, 149 | syl5 34 |
. . . 4
⊢ (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
151 | 150 | exlimdvv 1938 |
. . 3
⊢ (𝜑 → (∃𝑓∃ℎ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
152 | 27, 151 | syl5bir 242 |
. 2
⊢ (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ ∃ℎ(ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘r ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘r ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
153 | 15, 26, 152 | mp2and 695 |
1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |