MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flimlem Structured version   Visualization version   GIF version

Theorem mbfi1flimlem 24241
Description: Lemma for mbfi1flim 24242. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flimlem.2 (𝜑𝐹:ℝ⟶ℝ)
Assertion
Ref Expression
mbfi1flimlem (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flimlem
Dummy variables 𝑦 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1flimlem.2 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
21ffvelrnda 6846 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31feqmptd 6729 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4 mbfi1flim.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
53, 4eqeltrrd 2918 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
62, 5mbfpos 24170 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) ∈ MblFn)
7 0re 10635 . . . . . 6 0 ∈ ℝ
8 ifcl 4513 . . . . . 6 (((𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
92, 7, 8sylancl 586 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
10 max1 12571 . . . . . 6 ((0 ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
117, 2, 10sylancr 587 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
12 elrege0 12835 . . . . 5 (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)))
139, 11, 12sylanbrc 583 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞))
1413fmpttd 6874 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
156, 14mbfi1fseq 24240 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
162renegcld 11059 . . . 4 ((𝜑𝑦 ∈ ℝ) → -(𝐹𝑦) ∈ ℝ)
172, 5mbfneg 24169 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ -(𝐹𝑦)) ∈ MblFn)
1816, 17mbfpos 24170 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) ∈ MblFn)
19 ifcl 4513 . . . . . 6 ((-(𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
2016, 7, 19sylancl 586 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
21 max1 12571 . . . . . 6 ((0 ∈ ℝ ∧ -(𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
227, 16, 21sylancr 587 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
23 elrege0 12835 . . . . 5 (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)))
2420, 22, 23sylanbrc 583 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞))
2524fmpttd 6874 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
2618, 25mbfi1fseq 24240 . 2 (𝜑 → ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
27 exdistrv 1949 . . 3 (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
28 3simpb 1143 . . . . . . 7 ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) → (𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
29 3simpb 1143 . . . . . . 7 ((:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
3028, 29anim12i 612 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
31 an4 652 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
3230, 31sylib 219 . . . . 5 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
33 r19.26 3174 . . . . . . 7 (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
34 i1fsub 24227 . . . . . . . . . 10 ((𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1) → (𝑥f𝑦) ∈ dom ∫1)
3534adantl 482 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ (𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1)) → (𝑥f𝑦) ∈ dom ∫1)
36 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓:ℕ⟶dom ∫1)
37 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → :ℕ⟶dom ∫1)
38 nnex 11636 . . . . . . . . . 10 ℕ ∈ V
3938a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ℕ ∈ V)
40 inidm 4198 . . . . . . . . 9 (ℕ ∩ ℕ) = ℕ
4135, 36, 37, 39, 39, 40off 7417 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (𝑓ff):ℕ⟶dom ∫1)
42 fveq2 6666 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4342breq2d 5074 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ (𝐹𝑦) ↔ 0 ≤ (𝐹𝑥)))
4443, 42ifbieq1d 4492 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
45 eqid 2825 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
46 fvex 6679 . . . . . . . . . . . . . . 15 (𝐹𝑥) ∈ V
47 c0ex 10627 . . . . . . . . . . . . . . 15 0 ∈ V
4846, 47ifex 4517 . . . . . . . . . . . . . 14 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
4944, 45, 48fvmpt 6764 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
5049breq2d 5074 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
5142negeqd 10872 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
5251breq2d 5074 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ -(𝐹𝑦) ↔ 0 ≤ -(𝐹𝑥)))
5352, 51ifbieq1d 4492 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
54 eqid 2825 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
55 negex 10876 . . . . . . . . . . . . . . 15 -(𝐹𝑥) ∈ V
5655, 47ifex 4517 . . . . . . . . . . . . . 14 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
5753, 54, 56fvmpt 6764 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
5857breq2d 5074 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
5950, 58anbi12d 630 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6059adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
61 nnuz 12273 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
62 1zzd 12005 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → 1 ∈ ℤ)
63 simprl 767 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
6438mptex 6984 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ∈ V)
66 simprr 769 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6736ffvelrnda 6846 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom ∫1)
68 i1ff 24195 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑛) ∈ dom ∫1 → (𝑓𝑛):ℝ⟶ℝ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛):ℝ⟶ℝ)
7069ffvelrnda 6846 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7170an32s 648 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7271recnd 10661 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℂ)
7372fmpttd 6874 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7473adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7574ffvelrnda 6846 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) ∈ ℂ)
7637ffvelrnda 6846 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛) ∈ dom ∫1)
77 i1ff 24195 . . . . . . . . . . . . . . . . . . . 20 ((𝑛) ∈ dom ∫1 → (𝑛):ℝ⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛):ℝ⟶ℝ)
7978ffvelrnda 6846 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛)‘𝑥) ∈ ℝ)
8079an32s 648 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℝ)
8180recnd 10661 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℂ)
8281fmpttd 6874 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8382adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8483ffvelrnda 6846 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) ∈ ℂ)
8536ffnd 6511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓 Fn ℕ)
8637ffnd 6511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → Fn ℕ)
87 eqidd 2826 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
88 eqidd 2826 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) = (𝑘))
8985, 86, 39, 39, 40, 87, 88ofval 7411 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ((𝑓ff)‘𝑘) = ((𝑓𝑘) ∘f − (𝑘)))
9089fveq1d 6668 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘f − (𝑘))‘𝑥))
9190adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘f − (𝑘))‘𝑥))
9236ffvelrnda 6846 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ dom ∫1)
93 i1ff 24195 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ dom ∫1 → (𝑓𝑘):ℝ⟶ℝ)
94 ffn 6510 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘):ℝ⟶ℝ → (𝑓𝑘) Fn ℝ)
9592, 93, 943syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) Fn ℝ)
9637ffvelrnda 6846 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) ∈ dom ∫1)
97 i1ff 24195 . . . . . . . . . . . . . . . . . . 19 ((𝑘) ∈ dom ∫1 → (𝑘):ℝ⟶ℝ)
98 ffn 6510 . . . . . . . . . . . . . . . . . . 19 ((𝑘):ℝ⟶ℝ → (𝑘) Fn ℝ)
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) Fn ℝ)
100 reex 10620 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ V
101100a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ℝ ∈ V)
102 inidm 4198 . . . . . . . . . . . . . . . . . 18 (ℝ ∩ ℝ) = ℝ
103 eqidd 2826 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑘)‘𝑥) = ((𝑓𝑘)‘𝑥))
104 eqidd 2826 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑘)‘𝑥) = ((𝑘)‘𝑥))
10595, 99, 101, 101, 102, 103, 104ofval 7411 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓𝑘) ∘f − (𝑘))‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
10691, 105eqtrd 2860 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
107106an32s 648 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
108 fveq2 6666 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓ff)‘𝑛) = ((𝑓ff)‘𝑘))
109108fveq1d 6668 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((𝑓ff)‘𝑛)‘𝑥) = (((𝑓ff)‘𝑘)‘𝑥))
110 eqid 2825 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))
111 fvex 6679 . . . . . . . . . . . . . . . . 17 (((𝑓ff)‘𝑘)‘𝑥) ∈ V
112109, 110, 111fvmpt 6764 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑓ff)‘𝑘)‘𝑥))
113112adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑓ff)‘𝑘)‘𝑥))
114 fveq2 6666 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
115114fveq1d 6668 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑘)‘𝑥))
116 eqid 2825 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))
117 fvex 6679 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑘)‘𝑥) ∈ V
118115, 116, 117fvmpt 6764 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) = ((𝑓𝑘)‘𝑥))
119 fveq2 6666 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑛) = (𝑘))
120119fveq1d 6668 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑛)‘𝑥) = ((𝑘)‘𝑥))
121 eqid 2825 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))
122 fvex 6679 . . . . . . . . . . . . . . . . . 18 ((𝑘)‘𝑥) ∈ V
123120, 121, 122fvmpt 6764 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) = ((𝑘)‘𝑥))
124118, 123oveq12d 7169 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
125124adantl 482 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
126107, 113, 1253eqtr4d 2870 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
127126adantlr 711 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
12861, 62, 63, 65, 66, 75, 84, 127climsub 14983 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
1291adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝐹:ℝ⟶ℝ)
130129ffvelrnda 6846 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
131 max0sub 12582 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ ℝ → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
133132adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
134128, 133breqtrd 5088 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))
135134ex 413 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
13660, 135sylbid 241 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
137136ralimdva 3181 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
138 ovex 7184 . . . . . . . . 9 (𝑓ff) ∈ V
139 feq1 6491 . . . . . . . . . 10 (𝑔 = (𝑓ff) → (𝑔:ℕ⟶dom ∫1 ↔ (𝑓ff):ℕ⟶dom ∫1))
140 fveq1 6665 . . . . . . . . . . . . . 14 (𝑔 = (𝑓ff) → (𝑔𝑛) = ((𝑓ff)‘𝑛))
141140fveq1d 6668 . . . . . . . . . . . . 13 (𝑔 = (𝑓ff) → ((𝑔𝑛)‘𝑥) = (((𝑓ff)‘𝑛)‘𝑥))
142141mpteq2dv 5158 . . . . . . . . . . . 12 (𝑔 = (𝑓ff) → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)))
143142breq1d 5072 . . . . . . . . . . 11 (𝑔 = (𝑓ff) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
144143ralbidv 3201 . . . . . . . . . 10 (𝑔 = (𝑓ff) → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
145139, 144anbi12d 630 . . . . . . . . 9 (𝑔 = (𝑓ff) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ ((𝑓ff):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
146138, 145spcev 3610 . . . . . . . 8 (((𝑓ff):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
14741, 137, 146syl6an 680 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
14833, 147syl5bir 244 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
149148expimpd 454 . . . . 5 (𝜑 → (((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15032, 149syl5 34 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
151150exlimdvv 1928 . . 3 (𝜑 → (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15227, 151syl5bir 244 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15315, 26, 152mp2and 695 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  wral 3142  Vcvv 3499  ifcif 4469   class class class wbr 5062  cmpt 5142  dom cdm 5553   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  f cof 7400  r cofr 7401  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  +∞cpnf 10664  cle 10668  cmin 10862  -cneg 10863  cn 11630  [,)cico 12733  cli 14834  MblFncmbf 24133  1citg1 24134  0𝑝c0p 24188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-rest 16689  df-topgen 16710  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-top 21421  df-topon 21438  df-bases 21473  df-cmp 21914  df-ovol 23983  df-vol 23984  df-mbf 24138  df-itg1 24139  df-0p 24189
This theorem is referenced by:  mbfi1flim  24242
  Copyright terms: Public domain W3C validator