MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flimlem Structured version   Visualization version   GIF version

Theorem mbfi1flimlem 23796
Description: Lemma for mbfi1flim 23797. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flimlem.2 (𝜑𝐹:ℝ⟶ℝ)
Assertion
Ref Expression
mbfi1flimlem (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flimlem
Dummy variables 𝑦 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1flimlem.2 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
21ffvelrnda 6553 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31feqmptd 6442 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4 mbfi1flim.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
53, 4eqeltrrd 2845 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
62, 5mbfpos 23725 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) ∈ MblFn)
7 0re 10299 . . . . . 6 0 ∈ ℝ
8 ifcl 4289 . . . . . 6 (((𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
92, 7, 8sylancl 580 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
10 max1 12225 . . . . . 6 ((0 ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
117, 2, 10sylancr 581 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
12 elrege0 12489 . . . . 5 (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)))
139, 11, 12sylanbrc 578 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞))
1413fmpttd 6579 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
156, 14mbfi1fseq 23795 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
162renegcld 10716 . . . 4 ((𝜑𝑦 ∈ ℝ) → -(𝐹𝑦) ∈ ℝ)
172, 5mbfneg 23724 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ -(𝐹𝑦)) ∈ MblFn)
1816, 17mbfpos 23725 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) ∈ MblFn)
19 ifcl 4289 . . . . . 6 ((-(𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
2016, 7, 19sylancl 580 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
21 max1 12225 . . . . . 6 ((0 ∈ ℝ ∧ -(𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
227, 16, 21sylancr 581 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
23 elrege0 12489 . . . . 5 (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)))
2420, 22, 23sylanbrc 578 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞))
2524fmpttd 6579 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
2618, 25mbfi1fseq 23795 . 2 (𝜑 → ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
27 eeanv 2346 . . 3 (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
28 3simpb 1180 . . . . . . 7 ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) → (𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
29 3simpb 1180 . . . . . . 7 ((:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
3028, 29anim12i 606 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
31 an4 646 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
3230, 31sylib 209 . . . . 5 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
33 r19.26 3211 . . . . . . 7 (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
34 i1fsub 23782 . . . . . . . . . 10 ((𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1) → (𝑥𝑓𝑦) ∈ dom ∫1)
3534adantl 473 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ (𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1)) → (𝑥𝑓𝑦) ∈ dom ∫1)
36 simprl 787 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓:ℕ⟶dom ∫1)
37 simprr 789 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → :ℕ⟶dom ∫1)
38 nnex 11286 . . . . . . . . . 10 ℕ ∈ V
3938a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ℕ ∈ V)
40 inidm 3984 . . . . . . . . 9 (ℕ ∩ ℕ) = ℕ
4135, 36, 37, 39, 39, 40off 7114 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (𝑓𝑓𝑓):ℕ⟶dom ∫1)
42 fveq2 6379 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4342breq2d 4823 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ (𝐹𝑦) ↔ 0 ≤ (𝐹𝑥)))
4443, 42ifbieq1d 4268 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
45 eqid 2765 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
46 fvex 6392 . . . . . . . . . . . . . . 15 (𝐹𝑥) ∈ V
47 c0ex 10291 . . . . . . . . . . . . . . 15 0 ∈ V
4846, 47ifex 4293 . . . . . . . . . . . . . 14 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
4944, 45, 48fvmpt 6475 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
5049breq2d 4823 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
5142negeqd 10534 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
5251breq2d 4823 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ -(𝐹𝑦) ↔ 0 ≤ -(𝐹𝑥)))
5352, 51ifbieq1d 4268 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
54 eqid 2765 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
55 negex 10538 . . . . . . . . . . . . . . 15 -(𝐹𝑥) ∈ V
5655, 47ifex 4293 . . . . . . . . . . . . . 14 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
5753, 54, 56fvmpt 6475 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
5857breq2d 4823 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
5950, 58anbi12d 624 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6059adantl 473 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
61 nnuz 11930 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
62 1zzd 11661 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → 1 ∈ ℤ)
63 simprl 787 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
6438mptex 6683 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ∈ V)
66 simprr 789 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6736ffvelrnda 6553 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom ∫1)
68 i1ff 23750 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑛) ∈ dom ∫1 → (𝑓𝑛):ℝ⟶ℝ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛):ℝ⟶ℝ)
7069ffvelrnda 6553 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7170an32s 642 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7271recnd 10326 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℂ)
7372fmpttd 6579 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7473adantr 472 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7574ffvelrnda 6553 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) ∈ ℂ)
7637ffvelrnda 6553 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛) ∈ dom ∫1)
77 i1ff 23750 . . . . . . . . . . . . . . . . . . . 20 ((𝑛) ∈ dom ∫1 → (𝑛):ℝ⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛):ℝ⟶ℝ)
7978ffvelrnda 6553 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛)‘𝑥) ∈ ℝ)
8079an32s 642 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℝ)
8180recnd 10326 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℂ)
8281fmpttd 6579 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8382adantr 472 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8483ffvelrnda 6553 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) ∈ ℂ)
8536ffnd 6226 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓 Fn ℕ)
8637ffnd 6226 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → Fn ℕ)
87 eqidd 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
88 eqidd 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) = (𝑘))
8985, 86, 39, 39, 40, 87, 88ofval 7108 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑓𝑓)‘𝑘) = ((𝑓𝑘) ∘𝑓 − (𝑘)))
9089fveq1d 6381 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑓𝑓)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘𝑓 − (𝑘))‘𝑥))
9190adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓𝑓𝑓)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘𝑓 − (𝑘))‘𝑥))
9236ffvelrnda 6553 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ dom ∫1)
93 i1ff 23750 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ dom ∫1 → (𝑓𝑘):ℝ⟶ℝ)
94 ffn 6225 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘):ℝ⟶ℝ → (𝑓𝑘) Fn ℝ)
9592, 93, 943syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) Fn ℝ)
9637ffvelrnda 6553 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) ∈ dom ∫1)
97 i1ff 23750 . . . . . . . . . . . . . . . . . . 19 ((𝑘) ∈ dom ∫1 → (𝑘):ℝ⟶ℝ)
98 ffn 6225 . . . . . . . . . . . . . . . . . . 19 ((𝑘):ℝ⟶ℝ → (𝑘) Fn ℝ)
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) Fn ℝ)
100 reex 10284 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ V
101100a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ℝ ∈ V)
102 inidm 3984 . . . . . . . . . . . . . . . . . 18 (ℝ ∩ ℝ) = ℝ
103 eqidd 2766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑘)‘𝑥) = ((𝑓𝑘)‘𝑥))
104 eqidd 2766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑘)‘𝑥) = ((𝑘)‘𝑥))
10595, 99, 101, 101, 102, 103, 104ofval 7108 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓𝑘) ∘𝑓 − (𝑘))‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
10691, 105eqtrd 2799 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓𝑓𝑓)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
107106an32s 642 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑓𝑓)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
108 fveq2 6379 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓𝑓𝑓)‘𝑛) = ((𝑓𝑓𝑓)‘𝑘))
109108fveq1d 6381 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((𝑓𝑓𝑓)‘𝑛)‘𝑥) = (((𝑓𝑓𝑓)‘𝑘)‘𝑥))
110 eqid 2765 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥))
111 fvex 6392 . . . . . . . . . . . . . . . . 17 (((𝑓𝑓𝑓)‘𝑘)‘𝑥) ∈ V
112109, 110, 111fvmpt 6475 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥))‘𝑘) = (((𝑓𝑓𝑓)‘𝑘)‘𝑥))
113112adantl 473 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥))‘𝑘) = (((𝑓𝑓𝑓)‘𝑘)‘𝑥))
114 fveq2 6379 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
115114fveq1d 6381 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑘)‘𝑥))
116 eqid 2765 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))
117 fvex 6392 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑘)‘𝑥) ∈ V
118115, 116, 117fvmpt 6475 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) = ((𝑓𝑘)‘𝑥))
119 fveq2 6379 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑛) = (𝑘))
120119fveq1d 6381 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑛)‘𝑥) = ((𝑘)‘𝑥))
121 eqid 2765 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))
122 fvex 6392 . . . . . . . . . . . . . . . . . 18 ((𝑘)‘𝑥) ∈ V
123120, 121, 122fvmpt 6475 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) = ((𝑘)‘𝑥))
124118, 123oveq12d 6864 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
125124adantl 473 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
126107, 113, 1253eqtr4d 2809 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
127126adantlr 706 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
12861, 62, 63, 65, 66, 75, 84, 127climsub 14665 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
1291adantr 472 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝐹:ℝ⟶ℝ)
130129ffvelrnda 6553 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
131 max0sub 12236 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ ℝ → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
133132adantr 472 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
134128, 133breqtrd 4837 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))
135134ex 401 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) → (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
13660, 135sylbid 231 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
137136ralimdva 3109 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
138 ovex 6878 . . . . . . . . 9 (𝑓𝑓𝑓) ∈ V
139 feq1 6206 . . . . . . . . . 10 (𝑔 = (𝑓𝑓𝑓) → (𝑔:ℕ⟶dom ∫1 ↔ (𝑓𝑓𝑓):ℕ⟶dom ∫1))
140 fveq1 6378 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑓𝑓) → (𝑔𝑛) = ((𝑓𝑓𝑓)‘𝑛))
141140fveq1d 6381 . . . . . . . . . . . . 13 (𝑔 = (𝑓𝑓𝑓) → ((𝑔𝑛)‘𝑥) = (((𝑓𝑓𝑓)‘𝑛)‘𝑥))
142141mpteq2dv 4906 . . . . . . . . . . . 12 (𝑔 = (𝑓𝑓𝑓) → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)))
143142breq1d 4821 . . . . . . . . . . 11 (𝑔 = (𝑓𝑓𝑓) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
144143ralbidv 3133 . . . . . . . . . 10 (𝑔 = (𝑓𝑓𝑓) → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
145139, 144anbi12d 624 . . . . . . . . 9 (𝑔 = (𝑓𝑓𝑓) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ ((𝑓𝑓𝑓):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
146138, 145spcev 3453 . . . . . . . 8 (((𝑓𝑓𝑓):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓𝑓𝑓)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
14741, 137, 146syl6an 674 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
14833, 147syl5bir 234 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
149148expimpd 445 . . . . 5 (𝜑 → (((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15032, 149syl5 34 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
151150exlimdvv 2029 . . 3 (𝜑 → (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15227, 151syl5bir 234 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝𝑟 ≤ (𝑛) ∧ (𝑛) ∘𝑟 ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15315, 26, 152mp2and 690 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wral 3055  Vcvv 3350  ifcif 4245   class class class wbr 4811  cmpt 4890  dom cdm 5279   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6846  𝑓 cof 7097  𝑟 cofr 7098  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196  +∞cpnf 10329  cle 10333  cmin 10525  -cneg 10526  cn 11279  [,)cico 12386  cli 14516  MblFncmbf 23688  1citg1 23689  0𝑝c0p 23743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-ofr 7100  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-n0 11544  df-z 11630  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12153  df-xadd 12154  df-xmul 12155  df-ioo 12388  df-ico 12390  df-icc 12391  df-fz 12541  df-fzo 12681  df-fl 12808  df-seq 13016  df-exp 13075  df-hash 13329  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-clim 14520  df-rlim 14521  df-sum 14718  df-rest 16365  df-topgen 16386  df-psmet 20027  df-xmet 20028  df-met 20029  df-bl 20030  df-mopn 20031  df-top 20994  df-topon 21011  df-bases 21046  df-cmp 21486  df-ovol 23538  df-vol 23539  df-mbf 23693  df-itg1 23694  df-0p 23744
This theorem is referenced by:  mbfi1flim  23797
  Copyright terms: Public domain W3C validator