MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flimlem Structured version   Visualization version   GIF version

Theorem mbfi1flimlem 25777
Description: Lemma for mbfi1flim 25778. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flimlem.2 (𝜑𝐹:ℝ⟶ℝ)
Assertion
Ref Expression
mbfi1flimlem (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐹   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flimlem
Dummy variables 𝑦 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1flimlem.2 . . . . 5 (𝜑𝐹:ℝ⟶ℝ)
21ffvelcdmda 7118 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31feqmptd 6990 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4 mbfi1flim.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
53, 4eqeltrrd 2845 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹𝑦)) ∈ MblFn)
62, 5mbfpos 25705 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) ∈ MblFn)
7 0re 11292 . . . . . 6 0 ∈ ℝ
8 ifcl 4593 . . . . . 6 (((𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
92, 7, 8sylancl 585 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ)
10 max1 13247 . . . . . 6 ((0 ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
117, 2, 10sylancr 586 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
12 elrege0 13514 . . . . 5 (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)))
139, 11, 12sylanbrc 582 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) ∈ (0[,)+∞))
1413fmpttd 7149 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
156, 14mbfi1fseq 25776 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
162renegcld 11717 . . . 4 ((𝜑𝑦 ∈ ℝ) → -(𝐹𝑦) ∈ ℝ)
172, 5mbfneg 25704 . . . 4 (𝜑 → (𝑦 ∈ ℝ ↦ -(𝐹𝑦)) ∈ MblFn)
1816, 17mbfpos 25705 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) ∈ MblFn)
19 ifcl 4593 . . . . . 6 ((-(𝐹𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
2016, 7, 19sylancl 585 . . . . 5 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ)
21 max1 13247 . . . . . 6 ((0 ∈ ℝ ∧ -(𝐹𝑦) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
227, 16, 21sylancr 586 . . . . 5 ((𝜑𝑦 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
23 elrege0 13514 . . . . 5 (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)))
2420, 22, 23sylanbrc 582 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) ∈ (0[,)+∞))
2524fmpttd 7149 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)):ℝ⟶(0[,)+∞))
2618, 25mbfi1fseq 25776 . 2 (𝜑 → ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
27 exdistrv 1955 . . 3 (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
28 3simpb 1149 . . . . . . 7 ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) → (𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)))
29 3simpb 1149 . . . . . . 7 ((:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
3028, 29anim12i 612 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
31 an4 655 . . . . . 6 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) ↔ ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
3230, 31sylib 218 . . . . 5 (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))))
33 r19.26 3117 . . . . . . 7 (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)))
34 i1fsub 25763 . . . . . . . . . 10 ((𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1) → (𝑥f𝑦) ∈ dom ∫1)
3534adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ (𝑥 ∈ dom ∫1𝑦 ∈ dom ∫1)) → (𝑥f𝑦) ∈ dom ∫1)
36 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓:ℕ⟶dom ∫1)
37 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → :ℕ⟶dom ∫1)
38 nnex 12299 . . . . . . . . . 10 ℕ ∈ V
3938a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ℕ ∈ V)
40 inidm 4248 . . . . . . . . 9 (ℕ ∩ ℕ) = ℕ
4135, 36, 37, 39, 39, 40off 7732 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (𝑓ff):ℕ⟶dom ∫1)
42 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
4342breq2d 5178 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ (𝐹𝑦) ↔ 0 ≤ (𝐹𝑥)))
4443, 42ifbieq1d 4572 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
45 eqid 2740 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))
46 fvex 6933 . . . . . . . . . . . . . . 15 (𝐹𝑥) ∈ V
47 c0ex 11284 . . . . . . . . . . . . . . 15 0 ∈ V
4846, 47ifex 4598 . . . . . . . . . . . . . 14 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
4944, 45, 48fvmpt 7029 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) = if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
5049breq2d 5178 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
5142negeqd 11530 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → -(𝐹𝑦) = -(𝐹𝑥))
5251breq2d 5178 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (0 ≤ -(𝐹𝑦) ↔ 0 ≤ -(𝐹𝑥)))
5352, 51ifbieq1d 4572 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
54 eqid 2740 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))
55 negex 11534 . . . . . . . . . . . . . . 15 -(𝐹𝑥) ∈ V
5655, 47ifex 4598 . . . . . . . . . . . . . 14 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
5753, 54, 56fvmpt 7029 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) = if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
5857breq2d 5178 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
5950, 58anbi12d 631 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6059adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
61 nnuz 12946 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
62 1zzd 12674 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → 1 ∈ ℤ)
63 simprl 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
6438mptex 7260 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ∈ V
6564a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ∈ V)
66 simprr 772 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6736ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom ∫1)
68 i1ff 25730 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑛) ∈ dom ∫1 → (𝑓𝑛):ℝ⟶ℝ)
6967, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛):ℝ⟶ℝ)
7069ffvelcdmda 7118 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7170an32s 651 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℝ)
7271recnd 11318 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑓𝑛)‘𝑥) ∈ ℂ)
7372fmpttd 7149 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7473adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)):ℕ⟶ℂ)
7574ffvelcdmda 7118 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) ∈ ℂ)
7637ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛) ∈ dom ∫1)
77 i1ff 25730 . . . . . . . . . . . . . . . . . . . 20 ((𝑛) ∈ dom ∫1 → (𝑛):ℝ⟶ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) → (𝑛):ℝ⟶ℝ)
7978ffvelcdmda 7118 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑛)‘𝑥) ∈ ℝ)
8079an32s 651 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℝ)
8180recnd 11318 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝑛)‘𝑥) ∈ ℂ)
8281fmpttd 7149 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8382adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)):ℕ⟶ℂ)
8483ffvelcdmda 7118 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) ∈ ℂ)
8536ffnd 6748 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝑓 Fn ℕ)
8637ffnd 6748 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → Fn ℕ)
87 eqidd 2741 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
88 eqidd 2741 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) = (𝑘))
8985, 86, 39, 39, 40, 87, 88ofval 7725 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ((𝑓ff)‘𝑘) = ((𝑓𝑘) ∘f − (𝑘)))
9089fveq1d 6922 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘f − (𝑘))‘𝑥))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘) ∘f − (𝑘))‘𝑥))
9236ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ dom ∫1)
93 i1ff 25730 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘) ∈ dom ∫1 → (𝑓𝑘):ℝ⟶ℝ)
94 ffn 6747 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑘):ℝ⟶ℝ → (𝑓𝑘) Fn ℝ)
9592, 93, 943syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) Fn ℝ)
9637ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) ∈ dom ∫1)
97 i1ff 25730 . . . . . . . . . . . . . . . . . . 19 ((𝑘) ∈ dom ∫1 → (𝑘):ℝ⟶ℝ)
98 ffn 6747 . . . . . . . . . . . . . . . . . . 19 ((𝑘):ℝ⟶ℝ → (𝑘) Fn ℝ)
9996, 97, 983syl 18 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → (𝑘) Fn ℝ)
100 reex 11275 . . . . . . . . . . . . . . . . . . 19 ℝ ∈ V
101100a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) → ℝ ∈ V)
102 inidm 4248 . . . . . . . . . . . . . . . . . 18 (ℝ ∩ ℝ) = ℝ
103 eqidd 2741 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑘)‘𝑥) = ((𝑓𝑘)‘𝑥))
104 eqidd 2741 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑘)‘𝑥) = ((𝑘)‘𝑥))
10595, 99, 101, 101, 102, 103, 104ofval 7725 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓𝑘) ∘f − (𝑘))‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
10691, 105eqtrd 2780 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
107106an32s 651 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑓ff)‘𝑘)‘𝑥) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
108 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓ff)‘𝑛) = ((𝑓ff)‘𝑘))
109108fveq1d 6922 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((𝑓ff)‘𝑛)‘𝑥) = (((𝑓ff)‘𝑘)‘𝑥))
110 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))
111 fvex 6933 . . . . . . . . . . . . . . . . 17 (((𝑓ff)‘𝑘)‘𝑥) ∈ V
112109, 110, 111fvmpt 7029 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑓ff)‘𝑘)‘𝑥))
113112adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑓ff)‘𝑘)‘𝑥))
114 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
115114fveq1d 6922 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑓𝑛)‘𝑥) = ((𝑓𝑘)‘𝑥))
116 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))
117 fvex 6933 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑘)‘𝑥) ∈ V
118115, 116, 117fvmpt 7029 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) = ((𝑓𝑘)‘𝑥))
119 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑛) = (𝑘))
120119fveq1d 6922 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((𝑛)‘𝑥) = ((𝑘)‘𝑥))
121 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))
122 fvex 6933 . . . . . . . . . . . . . . . . . 18 ((𝑘)‘𝑥) ∈ V
123120, 121, 122fvmpt 7029 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘) = ((𝑘)‘𝑥))
124118, 123oveq12d 7466 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
125124adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)) = (((𝑓𝑘)‘𝑥) − ((𝑘)‘𝑥)))
126107, 113, 1253eqtr4d 2790 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
127126adantlr 714 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥))‘𝑘)))
12861, 62, 63, 65, 66, 75, 84, 127climsub 15680 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
1291adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → 𝐹:ℝ⟶ℝ)
130129ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
131 max0sub 13258 . . . . . . . . . . . . . 14 ((𝐹𝑥) ∈ ℝ → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
132130, 131syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
133132adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
134128, 133breqtrd 5192 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) ∧ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))
135134ex 412 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
13660, 135sylbid 240 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) ∧ 𝑥 ∈ ℝ) → (((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
137136ralimdva 3173 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
138 ovex 7481 . . . . . . . . 9 (𝑓ff) ∈ V
139 feq1 6728 . . . . . . . . . 10 (𝑔 = (𝑓ff) → (𝑔:ℕ⟶dom ∫1 ↔ (𝑓ff):ℕ⟶dom ∫1))
140 fveq1 6919 . . . . . . . . . . . . . 14 (𝑔 = (𝑓ff) → (𝑔𝑛) = ((𝑓ff)‘𝑛))
141140fveq1d 6922 . . . . . . . . . . . . 13 (𝑔 = (𝑓ff) → ((𝑔𝑛)‘𝑥) = (((𝑓ff)‘𝑛)‘𝑥))
142141mpteq2dv 5268 . . . . . . . . . . . 12 (𝑔 = (𝑓ff) → (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)))
143142breq1d 5176 . . . . . . . . . . 11 (𝑔 = (𝑓ff) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
144143ralbidv 3184 . . . . . . . . . 10 (𝑔 = (𝑓ff) → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
145139, 144anbi12d 631 . . . . . . . . 9 (𝑔 = (𝑓ff) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)) ↔ ((𝑓ff):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
146138, 145spcev 3619 . . . . . . . 8 (((𝑓ff):ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓ff)‘𝑛)‘𝑥)) ⇝ (𝐹𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
14741, 137, 146syl6an 683 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
14833, 147biimtrrid 243 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1)) → ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
149148expimpd 453 . . . . 5 (𝜑 → (((𝑓:ℕ⟶dom ∫1:ℕ⟶dom ∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15032, 149syl5 34 . . . 4 (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
151150exlimdvv 1933 . . 3 (𝜑 → (∃𝑓((𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ (:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15227, 151biimtrrid 243 . 2 (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑓𝑛) ∧ (𝑓𝑛) ∘r ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹𝑦), (𝐹𝑦), 0))‘𝑥)) ∧ ∃(:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑛) ∧ (𝑛) ∘r ≤ (‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑦), -(𝐹𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
15315, 26, 152mp2and 698 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  cle 11325  cmin 11520  -cneg 11521  cn 12293  [,)cico 13409  cli 15530  MblFncmbf 25668  1citg1 25669  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-0p 25724
This theorem is referenced by:  mbfi1flim  25778
  Copyright terms: Public domain W3C validator