MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlkonALT Structured version   Visualization version   GIF version

Theorem umgr2adedgwlkonALT 29745
Description: Alternate proof for umgr2adedgwlkon 29744, using umgr2adedgwlk 29743, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edgβ€˜πΊ)
umgr2adedgwlk.i 𝐼 = (iEdgβ€˜πΊ)
umgr2adedgwlk.f 𝐹 = βŸ¨β€œπ½πΎβ€βŸ©
umgr2adedgwlk.p 𝑃 = βŸ¨β€œπ΄π΅πΆβ€βŸ©
umgr2adedgwlk.g (πœ‘ β†’ 𝐺 ∈ UMGraph)
umgr2adedgwlk.a (πœ‘ β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
umgr2adedgwlk.j (πœ‘ β†’ (πΌβ€˜π½) = {𝐴, 𝐡})
umgr2adedgwlk.k (πœ‘ β†’ (πΌβ€˜πΎ) = {𝐡, 𝐢})
Assertion
Ref Expression
umgr2adedgwlkonALT (πœ‘ β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃)

Proof of Theorem umgr2adedgwlkonALT
StepHypRef Expression
1 umgr2adedgwlk.e . . . 4 𝐸 = (Edgβ€˜πΊ)
2 umgr2adedgwlk.i . . . 4 𝐼 = (iEdgβ€˜πΊ)
3 umgr2adedgwlk.f . . . 4 𝐹 = βŸ¨β€œπ½πΎβ€βŸ©
4 umgr2adedgwlk.p . . . 4 𝑃 = βŸ¨β€œπ΄π΅πΆβ€βŸ©
5 umgr2adedgwlk.g . . . 4 (πœ‘ β†’ 𝐺 ∈ UMGraph)
6 umgr2adedgwlk.a . . . 4 (πœ‘ β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
7 umgr2adedgwlk.j . . . 4 (πœ‘ β†’ (πΌβ€˜π½) = {𝐴, 𝐡})
8 umgr2adedgwlk.k . . . 4 (πœ‘ β†’ (πΌβ€˜πΎ) = {𝐡, 𝐢})
91, 2, 3, 4, 5, 6, 7, 8umgr2adedgwlk 29743 . . 3 (πœ‘ β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))))
10 simp1 1134 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ 𝐹(Walksβ€˜πΊ)𝑃)
11 id 22 . . . . . . 7 ((π‘ƒβ€˜0) = 𝐴 β†’ (π‘ƒβ€˜0) = 𝐴)
1211eqcoms 2735 . . . . . 6 (𝐴 = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜0) = 𝐴)
13123ad2ant1 1131 . . . . 5 ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜0) = 𝐴)
14133ad2ant3 1133 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (π‘ƒβ€˜0) = 𝐴)
15 fveq2 6891 . . . . . . . . . . . 12 (2 = (β™―β€˜πΉ) β†’ (π‘ƒβ€˜2) = (π‘ƒβ€˜(β™―β€˜πΉ)))
1615eqcoms 2735 . . . . . . . . . . 11 ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜2) = (π‘ƒβ€˜(β™―β€˜πΉ)))
1716eqeq1d 2729 . . . . . . . . . 10 ((β™―β€˜πΉ) = 2 β†’ ((π‘ƒβ€˜2) = 𝐢 ↔ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
1817biimpcd 248 . . . . . . . . 9 ((π‘ƒβ€˜2) = 𝐢 β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
1918eqcoms 2735 . . . . . . . 8 (𝐢 = (π‘ƒβ€˜2) β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
20193ad2ant3 1133 . . . . . . 7 ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
2120com12 32 . . . . . 6 ((β™―β€˜πΉ) = 2 β†’ ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
2221a1i 11 . . . . 5 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((β™―β€˜πΉ) = 2 β†’ ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
23223imp 1109 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)
2410, 14, 233jca 1126 . . 3 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
259, 24syl 17 . 2 (πœ‘ β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
26 3anass 1093 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
275, 6, 26sylanbrc 582 . . . . 5 (πœ‘ β†’ (𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
281umgr2adedgwlklem 29742 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
29 3simpb 1147 . . . . . 6 ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
3029adantl 481 . . . . 5 (((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
3127, 28, 303syl 18 . . . 4 (πœ‘ β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
32 3anass 1093 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
335, 31, 32sylanbrc 582 . . 3 (πœ‘ β†’ (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
34 s2cli 14855 . . . . 5 βŸ¨β€œπ½πΎβ€βŸ© ∈ Word V
353, 34eqeltri 2824 . . . 4 𝐹 ∈ Word V
36 s3cli 14856 . . . . 5 βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ Word V
374, 36eqeltri 2824 . . . 4 𝑃 ∈ Word V
3835, 37pm3.2i 470 . . 3 (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)
39 id 22 . . . . . 6 ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
40393adant1 1128 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
4140anim1i 614 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)))
42 eqid 2727 . . . . 5 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
4342iswlkon 29458 . . . 4 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4441, 43syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4533, 38, 44sylancl 585 . 2 (πœ‘ β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4625, 45mpbird 257 1 (πœ‘ β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  Vcvv 3469  {cpr 4626   class class class wbr 5142  β€˜cfv 6542  (class class class)co 7414  0cc0 11130  1c1 11131  2c2 12289  β™―chash 14313  Word cword 14488  βŸ¨β€œcs2 14816  βŸ¨β€œcs3 14817  Vtxcvtx 28796  iEdgciedg 28797  Edgcedg 28847  UMGraphcumgr 28881  Walkscwlks 29397  WalksOncwlkson 29398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-concat 14545  df-s1 14570  df-s2 14823  df-s3 14824  df-edg 28848  df-umgr 28883  df-wlks 29400  df-wlkson 29401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator