Proof of Theorem umgr2adedgwlkonALT
Step | Hyp | Ref
| Expression |
1 | | umgr2adedgwlk.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
2 | | umgr2adedgwlk.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝐺) |
3 | | umgr2adedgwlk.f |
. . . 4
⊢ 𝐹 = 〈“𝐽𝐾”〉 |
4 | | umgr2adedgwlk.p |
. . . 4
⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
5 | | umgr2adedgwlk.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ UMGraph) |
6 | | umgr2adedgwlk.a |
. . . 4
⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
7 | | umgr2adedgwlk.j |
. . . 4
⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
8 | | umgr2adedgwlk.k |
. . . 4
⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | umgr2adedgwlk 28211 |
. . 3
⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) |
10 | | simp1 1134 |
. . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(Walks‘𝐺)𝑃) |
11 | | id 22 |
. . . . . . 7
⊢ ((𝑃‘0) = 𝐴 → (𝑃‘0) = 𝐴) |
12 | 11 | eqcoms 2746 |
. . . . . 6
⊢ (𝐴 = (𝑃‘0) → (𝑃‘0) = 𝐴) |
13 | 12 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘0) = 𝐴) |
14 | 13 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘0) = 𝐴) |
15 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (2 =
(♯‘𝐹) →
(𝑃‘2) = (𝑃‘(♯‘𝐹))) |
16 | 15 | eqcoms 2746 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
2 → (𝑃‘2) =
(𝑃‘(♯‘𝐹))) |
17 | 16 | eqeq1d 2740 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
2 → ((𝑃‘2) =
𝐶 ↔ (𝑃‘(♯‘𝐹)) = 𝐶)) |
18 | 17 | biimpcd 248 |
. . . . . . . . 9
⊢ ((𝑃‘2) = 𝐶 → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶)) |
19 | 18 | eqcoms 2746 |
. . . . . . . 8
⊢ (𝐶 = (𝑃‘2) → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶)) |
20 | 19 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶)) |
21 | 20 | com12 32 |
. . . . . 6
⊢
((♯‘𝐹) =
2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(♯‘𝐹)) = 𝐶)) |
22 | 21 | a1i 11 |
. . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(♯‘𝐹)) = 𝐶))) |
23 | 22 | 3imp 1109 |
. . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(♯‘𝐹)) = 𝐶) |
24 | 10, 14, 23 | 3jca 1126 |
. . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)) |
25 | 9, 24 | syl 17 |
. 2
⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)) |
26 | | 3anass 1093 |
. . . . . 6
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) |
27 | 5, 6, 26 | sylanbrc 582 |
. . . . 5
⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
28 | 1 | umgr2adedgwlklem 28210 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
29 | | 3simpb 1147 |
. . . . . 6
⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
30 | 29 | adantl 481 |
. . . . 5
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
31 | 27, 28, 30 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
32 | | 3anass 1093 |
. . . 4
⊢ ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
33 | 5, 31, 32 | sylanbrc 582 |
. . 3
⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
34 | | s2cli 14521 |
. . . . 5
⊢
〈“𝐽𝐾”〉 ∈ Word
V |
35 | 3, 34 | eqeltri 2835 |
. . . 4
⊢ 𝐹 ∈ Word V |
36 | | s3cli 14522 |
. . . . 5
⊢
〈“𝐴𝐵𝐶”〉 ∈ Word V |
37 | 4, 36 | eqeltri 2835 |
. . . 4
⊢ 𝑃 ∈ Word V |
38 | 35, 37 | pm3.2i 470 |
. . 3
⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) |
39 | | id 22 |
. . . . . 6
⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
40 | 39 | 3adant1 1128 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
41 | 40 | anim1i 614 |
. . . 4
⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V))) |
42 | | eqid 2738 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
43 | 42 | iswlkon 27927 |
. . . 4
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
44 | 41, 43 | syl 17 |
. . 3
⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
45 | 33, 38, 44 | sylancl 585 |
. 2
⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) |
46 | 25, 45 | mpbird 256 |
1
⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |