MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlkonALT Structured version   Visualization version   GIF version

Theorem umgr2adedgwlkonALT 29190
Description: Alternate proof for umgr2adedgwlkon 29189, using umgr2adedgwlk 29188, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edgβ€˜πΊ)
umgr2adedgwlk.i 𝐼 = (iEdgβ€˜πΊ)
umgr2adedgwlk.f 𝐹 = βŸ¨β€œπ½πΎβ€βŸ©
umgr2adedgwlk.p 𝑃 = βŸ¨β€œπ΄π΅πΆβ€βŸ©
umgr2adedgwlk.g (πœ‘ β†’ 𝐺 ∈ UMGraph)
umgr2adedgwlk.a (πœ‘ β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
umgr2adedgwlk.j (πœ‘ β†’ (πΌβ€˜π½) = {𝐴, 𝐡})
umgr2adedgwlk.k (πœ‘ β†’ (πΌβ€˜πΎ) = {𝐡, 𝐢})
Assertion
Ref Expression
umgr2adedgwlkonALT (πœ‘ β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃)

Proof of Theorem umgr2adedgwlkonALT
StepHypRef Expression
1 umgr2adedgwlk.e . . . 4 𝐸 = (Edgβ€˜πΊ)
2 umgr2adedgwlk.i . . . 4 𝐼 = (iEdgβ€˜πΊ)
3 umgr2adedgwlk.f . . . 4 𝐹 = βŸ¨β€œπ½πΎβ€βŸ©
4 umgr2adedgwlk.p . . . 4 𝑃 = βŸ¨β€œπ΄π΅πΆβ€βŸ©
5 umgr2adedgwlk.g . . . 4 (πœ‘ β†’ 𝐺 ∈ UMGraph)
6 umgr2adedgwlk.a . . . 4 (πœ‘ β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
7 umgr2adedgwlk.j . . . 4 (πœ‘ β†’ (πΌβ€˜π½) = {𝐴, 𝐡})
8 umgr2adedgwlk.k . . . 4 (πœ‘ β†’ (πΌβ€˜πΎ) = {𝐡, 𝐢})
91, 2, 3, 4, 5, 6, 7, 8umgr2adedgwlk 29188 . . 3 (πœ‘ β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))))
10 simp1 1136 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ 𝐹(Walksβ€˜πΊ)𝑃)
11 id 22 . . . . . . 7 ((π‘ƒβ€˜0) = 𝐴 β†’ (π‘ƒβ€˜0) = 𝐴)
1211eqcoms 2740 . . . . . 6 (𝐴 = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜0) = 𝐴)
13123ad2ant1 1133 . . . . 5 ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜0) = 𝐴)
14133ad2ant3 1135 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (π‘ƒβ€˜0) = 𝐴)
15 fveq2 6888 . . . . . . . . . . . 12 (2 = (β™―β€˜πΉ) β†’ (π‘ƒβ€˜2) = (π‘ƒβ€˜(β™―β€˜πΉ)))
1615eqcoms 2740 . . . . . . . . . . 11 ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜2) = (π‘ƒβ€˜(β™―β€˜πΉ)))
1716eqeq1d 2734 . . . . . . . . . 10 ((β™―β€˜πΉ) = 2 β†’ ((π‘ƒβ€˜2) = 𝐢 ↔ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
1817biimpcd 248 . . . . . . . . 9 ((π‘ƒβ€˜2) = 𝐢 β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
1918eqcoms 2740 . . . . . . . 8 (𝐢 = (π‘ƒβ€˜2) β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
20193ad2ant3 1135 . . . . . . 7 ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
2120com12 32 . . . . . 6 ((β™―β€˜πΉ) = 2 β†’ ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
2221a1i 11 . . . . 5 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((β™―β€˜πΉ) = 2 β†’ ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
23223imp 1111 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)
2410, 14, 233jca 1128 . . 3 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
259, 24syl 17 . 2 (πœ‘ β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
26 3anass 1095 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
275, 6, 26sylanbrc 583 . . . . 5 (πœ‘ β†’ (𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
281umgr2adedgwlklem 29187 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
29 3simpb 1149 . . . . . 6 ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
3029adantl 482 . . . . 5 (((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
3127, 28, 303syl 18 . . . 4 (πœ‘ β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
32 3anass 1095 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
335, 31, 32sylanbrc 583 . . 3 (πœ‘ β†’ (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
34 s2cli 14827 . . . . 5 βŸ¨β€œπ½πΎβ€βŸ© ∈ Word V
353, 34eqeltri 2829 . . . 4 𝐹 ∈ Word V
36 s3cli 14828 . . . . 5 βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ Word V
374, 36eqeltri 2829 . . . 4 𝑃 ∈ Word V
3835, 37pm3.2i 471 . . 3 (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)
39 id 22 . . . . . 6 ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
40393adant1 1130 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
4140anim1i 615 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)))
42 eqid 2732 . . . . 5 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
4342iswlkon 28903 . . . 4 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4441, 43syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4533, 38, 44sylancl 586 . 2 (πœ‘ β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4625, 45mpbird 256 1 (πœ‘ β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  Vcvv 3474  {cpr 4629   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107  2c2 12263  β™―chash 14286  Word cword 14460  βŸ¨β€œcs2 14788  βŸ¨β€œcs3 14789  Vtxcvtx 28245  iEdgciedg 28246  Edgcedg 28296  UMGraphcumgr 28330  Walkscwlks 28842  WalksOncwlkson 28843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-edg 28297  df-umgr 28332  df-wlks 28845  df-wlkson 28846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator