Proof of Theorem umgr2adedgwlkonALT
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | umgr2adedgwlk.e | . . . 4
⊢ 𝐸 = (Edg‘𝐺) | 
| 2 |  | umgr2adedgwlk.i | . . . 4
⊢ 𝐼 = (iEdg‘𝐺) | 
| 3 |  | umgr2adedgwlk.f | . . . 4
⊢ 𝐹 = 〈“𝐽𝐾”〉 | 
| 4 |  | umgr2adedgwlk.p | . . . 4
⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | 
| 5 |  | umgr2adedgwlk.g | . . . 4
⊢ (𝜑 → 𝐺 ∈ UMGraph) | 
| 6 |  | umgr2adedgwlk.a | . . . 4
⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | 
| 7 |  | umgr2adedgwlk.j | . . . 4
⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | 
| 8 |  | umgr2adedgwlk.k | . . . 4
⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | umgr2adedgwlk 29965 | . . 3
⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)))) | 
| 10 |  | simp1 1137 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(Walks‘𝐺)𝑃) | 
| 11 |  | id 22 | . . . . . . 7
⊢ ((𝑃‘0) = 𝐴 → (𝑃‘0) = 𝐴) | 
| 12 | 11 | eqcoms 2745 | . . . . . 6
⊢ (𝐴 = (𝑃‘0) → (𝑃‘0) = 𝐴) | 
| 13 | 12 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘0) = 𝐴) | 
| 14 | 13 | 3ad2ant3 1136 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘0) = 𝐴) | 
| 15 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (2 =
(♯‘𝐹) →
(𝑃‘2) = (𝑃‘(♯‘𝐹))) | 
| 16 | 15 | eqcoms 2745 | . . . . . . . . . . 11
⊢
((♯‘𝐹) =
2 → (𝑃‘2) =
(𝑃‘(♯‘𝐹))) | 
| 17 | 16 | eqeq1d 2739 | . . . . . . . . . 10
⊢
((♯‘𝐹) =
2 → ((𝑃‘2) =
𝐶 ↔ (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 18 | 17 | biimpcd 249 | . . . . . . . . 9
⊢ ((𝑃‘2) = 𝐶 → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 19 | 18 | eqcoms 2745 | . . . . . . . 8
⊢ (𝐶 = (𝑃‘2) → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 20 | 19 | 3ad2ant3 1136 | . . . . . . 7
⊢ ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 21 | 20 | com12 32 | . . . . . 6
⊢
((♯‘𝐹) =
2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 22 | 21 | a1i 11 | . . . . 5
⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(♯‘𝐹)) = 𝐶))) | 
| 23 | 22 | 3imp 1111 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(♯‘𝐹)) = 𝐶) | 
| 24 | 10, 14, 23 | 3jca 1129 | . . 3
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 25 | 9, 24 | syl 17 | . 2
⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)) | 
| 26 |  | 3anass 1095 | . . . . . 6
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | 
| 27 | 5, 6, 26 | sylanbrc 583 | . . . . 5
⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | 
| 28 | 1 | umgr2adedgwlklem 29964 | . . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) | 
| 29 |  | 3simpb 1150 | . . . . . 6
⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) | 
| 30 | 29 | adantl 481 | . . . . 5
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) | 
| 31 | 27, 28, 30 | 3syl 18 | . . . 4
⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) | 
| 32 |  | 3anass 1095 | . . . 4
⊢ ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) | 
| 33 | 5, 31, 32 | sylanbrc 583 | . . 3
⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) | 
| 34 |  | s2cli 14919 | . . . . 5
⊢
〈“𝐽𝐾”〉 ∈ Word
V | 
| 35 | 3, 34 | eqeltri 2837 | . . . 4
⊢ 𝐹 ∈ Word V | 
| 36 |  | s3cli 14920 | . . . . 5
⊢
〈“𝐴𝐵𝐶”〉 ∈ Word V | 
| 37 | 4, 36 | eqeltri 2837 | . . . 4
⊢ 𝑃 ∈ Word V | 
| 38 | 35, 37 | pm3.2i 470 | . . 3
⊢ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) | 
| 39 |  | id 22 | . . . . . 6
⊢ ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) | 
| 40 | 39 | 3adant1 1131 | . . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) | 
| 41 | 40 | anim1i 615 | . . . 4
⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V))) | 
| 42 |  | eqid 2737 | . . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 43 | 42 | iswlkon 29675 | . . . 4
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) | 
| 44 | 41, 43 | syl 17 | . . 3
⊢ (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) | 
| 45 | 33, 38, 44 | sylancl 586 | . 2
⊢ (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))) | 
| 46 | 25, 45 | mpbird 257 | 1
⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |