MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlkonALT Structured version   Visualization version   GIF version

Theorem umgr2adedgwlkonALT 29861
Description: Alternate proof for umgr2adedgwlkon 29860, using umgr2adedgwlk 29859, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edg‘𝐺)
umgr2adedgwlk.i 𝐼 = (iEdg‘𝐺)
umgr2adedgwlk.f 𝐹 = ⟨“𝐽𝐾”⟩
umgr2adedgwlk.p 𝑃 = ⟨“𝐴𝐵𝐶”⟩
umgr2adedgwlk.g (𝜑𝐺 ∈ UMGraph)
umgr2adedgwlk.a (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
umgr2adedgwlk.j (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
umgr2adedgwlk.k (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
Assertion
Ref Expression
umgr2adedgwlkonALT (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)

Proof of Theorem umgr2adedgwlkonALT
StepHypRef Expression
1 umgr2adedgwlk.e . . . 4 𝐸 = (Edg‘𝐺)
2 umgr2adedgwlk.i . . . 4 𝐼 = (iEdg‘𝐺)
3 umgr2adedgwlk.f . . . 4 𝐹 = ⟨“𝐽𝐾”⟩
4 umgr2adedgwlk.p . . . 4 𝑃 = ⟨“𝐴𝐵𝐶”⟩
5 umgr2adedgwlk.g . . . 4 (𝜑𝐺 ∈ UMGraph)
6 umgr2adedgwlk.a . . . 4 (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
7 umgr2adedgwlk.j . . . 4 (𝜑 → (𝐼𝐽) = {𝐴, 𝐵})
8 umgr2adedgwlk.k . . . 4 (𝜑 → (𝐼𝐾) = {𝐵, 𝐶})
91, 2, 3, 4, 5, 6, 7, 8umgr2adedgwlk 29859 . . 3 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))))
10 simp1 1136 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → 𝐹(Walks‘𝐺)𝑃)
11 id 22 . . . . . . 7 ((𝑃‘0) = 𝐴 → (𝑃‘0) = 𝐴)
1211eqcoms 2742 . . . . . 6 (𝐴 = (𝑃‘0) → (𝑃‘0) = 𝐴)
13123ad2ant1 1133 . . . . 5 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘0) = 𝐴)
14133ad2ant3 1135 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘0) = 𝐴)
15 fveq2 6872 . . . . . . . . . . . 12 (2 = (♯‘𝐹) → (𝑃‘2) = (𝑃‘(♯‘𝐹)))
1615eqcoms 2742 . . . . . . . . . . 11 ((♯‘𝐹) = 2 → (𝑃‘2) = (𝑃‘(♯‘𝐹)))
1716eqeq1d 2736 . . . . . . . . . 10 ((♯‘𝐹) = 2 → ((𝑃‘2) = 𝐶 ↔ (𝑃‘(♯‘𝐹)) = 𝐶))
1817biimpcd 249 . . . . . . . . 9 ((𝑃‘2) = 𝐶 → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶))
1918eqcoms 2742 . . . . . . . 8 (𝐶 = (𝑃‘2) → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶))
20193ad2ant3 1135 . . . . . . 7 ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → ((♯‘𝐹) = 2 → (𝑃‘(♯‘𝐹)) = 𝐶))
2120com12 32 . . . . . 6 ((♯‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(♯‘𝐹)) = 𝐶))
2221a1i 11 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) = 2 → ((𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2)) → (𝑃‘(♯‘𝐹)) = 𝐶)))
23223imp 1110 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝑃‘(♯‘𝐹)) = 𝐶)
2410, 14, 233jca 1128 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 2 ∧ (𝐴 = (𝑃‘0) ∧ 𝐵 = (𝑃‘1) ∧ 𝐶 = (𝑃‘2))) → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))
259, 24syl 17 . 2 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶))
26 3anass 1094 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
275, 6, 26sylanbrc 583 . . . . 5 (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
281umgr2adedgwlklem 29858 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
29 3simpb 1149 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3029adantl 481 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
3127, 28, 303syl 18 . . . 4 (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
32 3anass 1094 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))))
335, 31, 32sylanbrc 583 . . 3 (𝜑 → (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
34 s2cli 14886 . . . . 5 ⟨“𝐽𝐾”⟩ ∈ Word V
353, 34eqeltri 2829 . . . 4 𝐹 ∈ Word V
36 s3cli 14887 . . . . 5 ⟨“𝐴𝐵𝐶”⟩ ∈ Word V
374, 36eqeltri 2829 . . . 4 𝑃 ∈ Word V
3835, 37pm3.2i 470 . . 3 (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)
39 id 22 . . . . . 6 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
40393adant1 1130 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))
4140anim1i 615 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)))
42 eqid 2734 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
4342iswlkon 29569 . . . 4 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)))
4441, 43syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)))
4533, 38, 44sylancl 586 . 2 (𝜑 → (𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐶)))
4625, 45mpbird 257 1 (𝜑𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3457  {cpr 4601   class class class wbr 5116  cfv 6527  (class class class)co 7399  0cc0 11121  1c1 11122  2c2 12287  chash 14336  Word cword 14519  ⟨“cs2 14847  ⟨“cs3 14848  Vtxcvtx 28907  iEdgciedg 28908  Edgcedg 28958  UMGraphcumgr 28992  Walkscwlks 29508  WalksOncwlkson 29509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-oadd 8478  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9907  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514  df-fzo 13661  df-hash 14337  df-word 14520  df-concat 14576  df-s1 14601  df-s2 14854  df-s3 14855  df-edg 28959  df-umgr 28994  df-wlks 29511  df-wlkson 29512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator