MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2adedgwlkonALT Structured version   Visualization version   GIF version

Theorem umgr2adedgwlkonALT 29814
Description: Alternate proof for umgr2adedgwlkon 29813, using umgr2adedgwlk 29812, but with a much longer proof! In a multigraph, two adjacent edges form a walk between two (different) vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
umgr2adedgwlk.e 𝐸 = (Edgβ€˜πΊ)
umgr2adedgwlk.i 𝐼 = (iEdgβ€˜πΊ)
umgr2adedgwlk.f 𝐹 = βŸ¨β€œπ½πΎβ€βŸ©
umgr2adedgwlk.p 𝑃 = βŸ¨β€œπ΄π΅πΆβ€βŸ©
umgr2adedgwlk.g (πœ‘ β†’ 𝐺 ∈ UMGraph)
umgr2adedgwlk.a (πœ‘ β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
umgr2adedgwlk.j (πœ‘ β†’ (πΌβ€˜π½) = {𝐴, 𝐡})
umgr2adedgwlk.k (πœ‘ β†’ (πΌβ€˜πΎ) = {𝐡, 𝐢})
Assertion
Ref Expression
umgr2adedgwlkonALT (πœ‘ β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃)

Proof of Theorem umgr2adedgwlkonALT
StepHypRef Expression
1 umgr2adedgwlk.e . . . 4 𝐸 = (Edgβ€˜πΊ)
2 umgr2adedgwlk.i . . . 4 𝐼 = (iEdgβ€˜πΊ)
3 umgr2adedgwlk.f . . . 4 𝐹 = βŸ¨β€œπ½πΎβ€βŸ©
4 umgr2adedgwlk.p . . . 4 𝑃 = βŸ¨β€œπ΄π΅πΆβ€βŸ©
5 umgr2adedgwlk.g . . . 4 (πœ‘ β†’ 𝐺 ∈ UMGraph)
6 umgr2adedgwlk.a . . . 4 (πœ‘ β†’ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
7 umgr2adedgwlk.j . . . 4 (πœ‘ β†’ (πΌβ€˜π½) = {𝐴, 𝐡})
8 umgr2adedgwlk.k . . . 4 (πœ‘ β†’ (πΌβ€˜πΎ) = {𝐡, 𝐢})
91, 2, 3, 4, 5, 6, 7, 8umgr2adedgwlk 29812 . . 3 (πœ‘ β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))))
10 simp1 1133 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ 𝐹(Walksβ€˜πΊ)𝑃)
11 id 22 . . . . . . 7 ((π‘ƒβ€˜0) = 𝐴 β†’ (π‘ƒβ€˜0) = 𝐴)
1211eqcoms 2733 . . . . . 6 (𝐴 = (π‘ƒβ€˜0) β†’ (π‘ƒβ€˜0) = 𝐴)
13123ad2ant1 1130 . . . . 5 ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜0) = 𝐴)
14133ad2ant3 1132 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (π‘ƒβ€˜0) = 𝐴)
15 fveq2 6894 . . . . . . . . . . . 12 (2 = (β™―β€˜πΉ) β†’ (π‘ƒβ€˜2) = (π‘ƒβ€˜(β™―β€˜πΉ)))
1615eqcoms 2733 . . . . . . . . . . 11 ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜2) = (π‘ƒβ€˜(β™―β€˜πΉ)))
1716eqeq1d 2727 . . . . . . . . . 10 ((β™―β€˜πΉ) = 2 β†’ ((π‘ƒβ€˜2) = 𝐢 ↔ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
1817biimpcd 248 . . . . . . . . 9 ((π‘ƒβ€˜2) = 𝐢 β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
1918eqcoms 2733 . . . . . . . 8 (𝐢 = (π‘ƒβ€˜2) β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
20193ad2ant3 1132 . . . . . . 7 ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ ((β™―β€˜πΉ) = 2 β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
2120com12 32 . . . . . 6 ((β™―β€˜πΉ) = 2 β†’ ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
2221a1i 11 . . . . 5 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((β™―β€˜πΉ) = 2 β†’ ((𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2)) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
23223imp 1108 . . . 4 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)
2410, 14, 233jca 1125 . . 3 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (β™―β€˜πΉ) = 2 ∧ (𝐴 = (π‘ƒβ€˜0) ∧ 𝐡 = (π‘ƒβ€˜1) ∧ 𝐢 = (π‘ƒβ€˜2))) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
259, 24syl 17 . 2 (πœ‘ β†’ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢))
26 3anass 1092 . . . . . 6 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸)))
275, 6, 26sylanbrc 581 . . . . 5 (πœ‘ β†’ (𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸))
281umgr2adedgwlklem 29811 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐡} ∈ 𝐸 ∧ {𝐡, 𝐢} ∈ 𝐸) β†’ ((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
29 3simpb 1146 . . . . . 6 ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
3029adantl 480 . . . . 5 (((𝐴 β‰  𝐡 ∧ 𝐡 β‰  𝐢) ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
3127, 28, 303syl 18 . . . 4 (πœ‘ β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
32 3anass 1092 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ↔ (𝐺 ∈ UMGraph ∧ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ))))
335, 31, 32sylanbrc 581 . . 3 (πœ‘ β†’ (𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
34 s2cli 14863 . . . . 5 βŸ¨β€œπ½πΎβ€βŸ© ∈ Word V
353, 34eqeltri 2821 . . . 4 𝐹 ∈ Word V
36 s3cli 14864 . . . . 5 βŸ¨β€œπ΄π΅πΆβ€βŸ© ∈ Word V
374, 36eqeltri 2821 . . . 4 𝑃 ∈ Word V
3835, 37pm3.2i 469 . . 3 (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)
39 id 22 . . . . . 6 ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
40393adant1 1127 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)))
4140anim1i 613 . . . 4 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)))
42 eqid 2725 . . . . 5 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
4342iswlkon 29527 . . . 4 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4441, 43syl 17 . . 3 (((𝐺 ∈ UMGraph ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐢 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ Word V ∧ 𝑃 ∈ Word V)) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4533, 38, 44sylancl 584 . 2 (πœ‘ β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐢)))
4625, 45mpbird 256 1 (πœ‘ β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐢)𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  Vcvv 3463  {cpr 4631   class class class wbr 5148  β€˜cfv 6547  (class class class)co 7417  0cc0 11138  1c1 11139  2c2 12297  β™―chash 14321  Word cword 14496  βŸ¨β€œcs2 14824  βŸ¨β€œcs3 14825  Vtxcvtx 28865  iEdgciedg 28866  Edgcedg 28916  UMGraphcumgr 28950  Walkscwlks 29466  WalksOncwlkson 29467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-concat 14553  df-s1 14578  df-s2 14831  df-s3 14832  df-edg 28917  df-umgr 28952  df-wlks 29469  df-wlkson 29470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator