Step | Hyp | Ref
| Expression |
1 | | umgr2adedgwlk.e |
. . . 4
β’ πΈ = (EdgβπΊ) |
2 | | umgr2adedgwlk.i |
. . . 4
β’ πΌ = (iEdgβπΊ) |
3 | | umgr2adedgwlk.f |
. . . 4
β’ πΉ = β¨βπ½πΎββ© |
4 | | umgr2adedgwlk.p |
. . . 4
β’ π = β¨βπ΄π΅πΆββ© |
5 | | umgr2adedgwlk.g |
. . . 4
β’ (π β πΊ β UMGraph) |
6 | | umgr2adedgwlk.a |
. . . 4
β’ (π β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ)) |
7 | | umgr2adedgwlk.j |
. . . 4
β’ (π β (πΌβπ½) = {π΄, π΅}) |
8 | | umgr2adedgwlk.k |
. . . 4
β’ (π β (πΌβπΎ) = {π΅, πΆ}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | umgr2adedgwlk 29188 |
. . 3
β’ (π β (πΉ(WalksβπΊ)π β§ (β―βπΉ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)))) |
10 | | simp1 1136 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β πΉ(WalksβπΊ)π) |
11 | | id 22 |
. . . . . . 7
β’ ((πβ0) = π΄ β (πβ0) = π΄) |
12 | 11 | eqcoms 2740 |
. . . . . 6
β’ (π΄ = (πβ0) β (πβ0) = π΄) |
13 | 12 | 3ad2ant1 1133 |
. . . . 5
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (πβ0) = π΄) |
14 | 13 | 3ad2ant3 1135 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (πβ0) = π΄) |
15 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (2 =
(β―βπΉ) β
(πβ2) = (πβ(β―βπΉ))) |
16 | 15 | eqcoms 2740 |
. . . . . . . . . . 11
β’
((β―βπΉ) =
2 β (πβ2) =
(πβ(β―βπΉ))) |
17 | 16 | eqeq1d 2734 |
. . . . . . . . . 10
β’
((β―βπΉ) =
2 β ((πβ2) =
πΆ β (πβ(β―βπΉ)) = πΆ)) |
18 | 17 | biimpcd 248 |
. . . . . . . . 9
β’ ((πβ2) = πΆ β ((β―βπΉ) = 2 β (πβ(β―βπΉ)) = πΆ)) |
19 | 18 | eqcoms 2740 |
. . . . . . . 8
β’ (πΆ = (πβ2) β ((β―βπΉ) = 2 β (πβ(β―βπΉ)) = πΆ)) |
20 | 19 | 3ad2ant3 1135 |
. . . . . . 7
β’ ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β ((β―βπΉ) = 2 β (πβ(β―βπΉ)) = πΆ)) |
21 | 20 | com12 32 |
. . . . . 6
β’
((β―βπΉ) =
2 β ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (πβ(β―βπΉ)) = πΆ)) |
22 | 21 | a1i 11 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β ((β―βπΉ) = 2 β ((π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2)) β (πβ(β―βπΉ)) = πΆ))) |
23 | 22 | 3imp 1111 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (πβ(β―βπΉ)) = πΆ) |
24 | 10, 14, 23 | 3jca 1128 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ (β―βπΉ) = 2 β§ (π΄ = (πβ0) β§ π΅ = (πβ1) β§ πΆ = (πβ2))) β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ)) |
25 | 9, 24 | syl 17 |
. 2
β’ (π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ)) |
26 | | 3anass 1095 |
. . . . . 6
β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β (πΊ β UMGraph β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) |
27 | 5, 6, 26 | sylanbrc 583 |
. . . . 5
β’ (π β (πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ)) |
28 | 1 | umgr2adedgwlklem 29187 |
. . . . 5
β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β ((π΄ β π΅ β§ π΅ β πΆ) β§ (π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)))) |
29 | | 3simpb 1149 |
. . . . . 6
β’ ((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β (π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
30 | 29 | adantl 482 |
. . . . 5
β’ (((π΄ β π΅ β§ π΅ β πΆ) β§ (π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) β (π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
31 | 27, 28, 30 | 3syl 18 |
. . . 4
β’ (π β (π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
32 | | 3anass 1095 |
. . . 4
β’ ((πΊ β UMGraph β§ π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β (πΊ β UMGraph β§ (π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)))) |
33 | 5, 31, 32 | sylanbrc 583 |
. . 3
β’ (π β (πΊ β UMGraph β§ π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
34 | | s2cli 14827 |
. . . . 5
β’
β¨βπ½πΎββ© β Word
V |
35 | 3, 34 | eqeltri 2829 |
. . . 4
β’ πΉ β Word V |
36 | | s3cli 14828 |
. . . . 5
β’
β¨βπ΄π΅πΆββ© β Word V |
37 | 4, 36 | eqeltri 2829 |
. . . 4
β’ π β Word V |
38 | 35, 37 | pm3.2i 471 |
. . 3
β’ (πΉ β Word V β§ π β Word V) |
39 | | id 22 |
. . . . . 6
β’ ((π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β (π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
40 | 39 | 3adant1 1130 |
. . . . 5
β’ ((πΊ β UMGraph β§ π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β (π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
41 | 40 | anim1i 615 |
. . . 4
β’ (((πΊ β UMGraph β§ π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β§ (πΉ β Word V β§ π β Word V)) β ((π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β§ (πΉ β Word V β§ π β Word V))) |
42 | | eqid 2732 |
. . . . 5
β’
(VtxβπΊ) =
(VtxβπΊ) |
43 | 42 | iswlkon 28903 |
. . . 4
β’ (((π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β§ (πΉ β Word V β§ π β Word V)) β (πΉ(π΄(WalksOnβπΊ)πΆ)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ))) |
44 | 41, 43 | syl 17 |
. . 3
β’ (((πΊ β UMGraph β§ π΄ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)) β§ (πΉ β Word V β§ π β Word V)) β (πΉ(π΄(WalksOnβπΊ)πΆ)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ))) |
45 | 33, 38, 44 | sylancl 586 |
. 2
β’ (π β (πΉ(π΄(WalksOnβπΊ)πΆ)π β (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = πΆ))) |
46 | 25, 45 | mpbird 256 |
1
β’ (π β πΉ(π΄(WalksOnβπΊ)πΆ)π) |