Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarms Structured version   Visualization version   GIF version

Theorem sigarms 46854
Description: Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarms ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵𝐶)) = ((𝐴𝐺𝐵) − (𝐴𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarms
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simp2 1137 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
3 simp3 1138 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
42, 3subcld 11533 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
5 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
65sigarac 46850 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵𝐶) ∈ ℂ) → (𝐴𝐺(𝐵𝐶)) = -((𝐵𝐶)𝐺𝐴))
71, 4, 6syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵𝐶)) = -((𝐵𝐶)𝐺𝐴))
85sigarmf 46852 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶)𝐺𝐴) = ((𝐵𝐺𝐴) − (𝐶𝐺𝐴)))
98negeqd 11415 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵𝐶)𝐺𝐴) = -((𝐵𝐺𝐴) − (𝐶𝐺𝐴)))
1093com12 1123 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵𝐶)𝐺𝐴) = -((𝐵𝐺𝐴) − (𝐶𝐺𝐴)))
11 3simpa 1148 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
1211ancomd 461 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
135sigarim 46849 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ)
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ)
1514recnd 11202 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ)
16 3simpb 1149 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ))
1716ancomd 461 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
185sigarim 46849 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℝ)
1917, 18syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℝ)
2019recnd 11202 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℂ)
21 negsubdi 11478 . . . . 5 (((𝐵𝐺𝐴) ∈ ℂ ∧ (𝐶𝐺𝐴) ∈ ℂ) → -((𝐵𝐺𝐴) − (𝐶𝐺𝐴)) = (-(𝐵𝐺𝐴) + (𝐶𝐺𝐴)))
22 simpl 482 . . . . . . 7 (((𝐵𝐺𝐴) ∈ ℂ ∧ (𝐶𝐺𝐴) ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ)
2322negcld 11520 . . . . . 6 (((𝐵𝐺𝐴) ∈ ℂ ∧ (𝐶𝐺𝐴) ∈ ℂ) → -(𝐵𝐺𝐴) ∈ ℂ)
24 simpr 484 . . . . . 6 (((𝐵𝐺𝐴) ∈ ℂ ∧ (𝐶𝐺𝐴) ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℂ)
2523, 24subnegd 11540 . . . . 5 (((𝐵𝐺𝐴) ∈ ℂ ∧ (𝐶𝐺𝐴) ∈ ℂ) → (-(𝐵𝐺𝐴) − -(𝐶𝐺𝐴)) = (-(𝐵𝐺𝐴) + (𝐶𝐺𝐴)))
2621, 25eqtr4d 2767 . . . 4 (((𝐵𝐺𝐴) ∈ ℂ ∧ (𝐶𝐺𝐴) ∈ ℂ) → -((𝐵𝐺𝐴) − (𝐶𝐺𝐴)) = (-(𝐵𝐺𝐴) − -(𝐶𝐺𝐴)))
2715, 20, 26syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵𝐺𝐴) − (𝐶𝐺𝐴)) = (-(𝐵𝐺𝐴) − -(𝐶𝐺𝐴)))
2810, 27eqtrd 2764 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵𝐶)𝐺𝐴) = (-(𝐵𝐺𝐴) − -(𝐶𝐺𝐴)))
295sigarac 46850 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
301, 2, 29syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
3130eqcomd 2735 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐵𝐺𝐴) = (𝐴𝐺𝐵))
325sigarac 46850 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) = -(𝐶𝐺𝐴))
331, 3, 32syl2anc 584 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) = -(𝐶𝐺𝐴))
3433eqcomd 2735 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐶𝐺𝐴) = (𝐴𝐺𝐶))
3531, 34oveq12d 7405 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-(𝐵𝐺𝐴) − -(𝐶𝐺𝐴)) = ((𝐴𝐺𝐵) − (𝐴𝐺𝐶)))
367, 28, 353eqtrd 2768 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵𝐶)) = ((𝐴𝐺𝐵) − (𝐴𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406  ccj 15062  cim 15064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-cj 15065  df-re 15066  df-im 15067
This theorem is referenced by:  sigarexp  46857  sigaradd  46864
  Copyright terms: Public domain W3C validator