MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmolem2 Structured version   Visualization version   GIF version

Theorem prodmolem2 15971
Description: Lemma for prodmo 15972. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmo.3 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
Assertion
Ref Expression
prodmolem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚   𝐵,𝑗   𝜑,𝑓,𝑗,𝑚   𝑓,𝐹,𝑗,𝑚   𝑗,𝐺   𝑓,𝑘,𝑥,𝑗,𝑚   𝑧,𝑓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)

Proof of Theorem prodmolem2
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1150 . . 3 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
21reximi 3084 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
3 fveq2 6906 . . . . . 6 (𝑚 = 𝑤 → (ℤ𝑚) = (ℤ𝑤))
43sseq2d 4016 . . . . 5 (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑤)))
5 seqeq1 14045 . . . . . 6 (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹))
65breq1d 5153 . . . . 5 (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥))
74, 6anbi12d 632 . . . 4 (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)))
87cbvrexvw 3238 . . 3 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥))
9 reeanv 3229 . . . . 5 (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
10 simprlr 780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ 𝑥)
11 simprll 779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑤))
12 uzssz 12899 . . . . . . . . . . . . . . . . 17 (ℤ𝑤) ⊆ ℤ
13 zssre 12620 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℝ
1412, 13sstri 3993 . . . . . . . . . . . . . . . 16 (ℤ𝑤) ⊆ ℝ
1511, 14sstrdi 3996 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℝ)
16 ltso 11341 . . . . . . . . . . . . . . 15 < Or ℝ
17 soss 5612 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
1815, 16, 17mpisyl 21 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → < Or 𝐴)
19 fzfi 14013 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ Fin
20 ovex 7464 . . . . . . . . . . . . . . . . . 18 (1...𝑚) ∈ V
2120f1oen 9013 . . . . . . . . . . . . . . . . 17 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
2221ad2antll 729 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2322ensymd 9045 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
24 enfii 9226 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2519, 23, 24sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
26 fz1iso 14501 . . . . . . . . . . . . . 14 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2718, 25, 26syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
28 prodmo.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
29 prodmo.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3029ad4ant14 752 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
31 prodmo.3 . . . . . . . . . . . . . . . 16 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
32 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵)
33 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
34 simplrl 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑤 ∈ ℤ)
35 simplll 775 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) → 𝐴 ⊆ (ℤ𝑤))
3635adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑤))
37 simprlr 780 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
38 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
3928, 30, 31, 32, 33, 34, 36, 37, 38prodmolem2a 15970 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
4039expr 456 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4140exlimdv 1933 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4227, 41mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
43 climuni 15588 . . . . . . . . . . . 12 ((seq𝑤( · , 𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
4410, 42, 43syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
45 eqeq2 2749 . . . . . . . . . . 11 (𝑧 = (seq1( · , 𝐺)‘𝑚) → (𝑥 = 𝑧𝑥 = (seq1( · , 𝐺)‘𝑚)))
4644, 45syl5ibrcom 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧))
4746expr 456 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (𝑓:(1...𝑚)–1-1-onto𝐴 → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧)))
4847impd 410 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
4948exlimdv 1933 . . . . . . 7 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5049expimpd 453 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) → (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5150rexlimdvva 3213 . . . . 5 (𝜑 → (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
529, 51biimtrrid 243 . . . 4 (𝜑 → ((∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5352expdimp 452 . . 3 ((𝜑 ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
548, 53sylan2b 594 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
552, 54sylan2 593 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wrex 3070  csb 3899  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225   Or wor 5591  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562  (class class class)co 7431  cen 8982  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cn 12266  cz 12613  cuz 12878  ...cfz 13547  seqcseq 14042  chash 14369  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524
This theorem is referenced by:  prodmo  15972
  Copyright terms: Public domain W3C validator