MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodmolem2 Structured version   Visualization version   GIF version

Theorem prodmolem2 15645
Description: Lemma for prodmo 15646. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmo.3 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
Assertion
Ref Expression
prodmolem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Distinct variable groups:   𝐴,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛   𝐴,𝑓,𝑗,𝑚   𝐵,𝑗   𝑓,𝐹,𝑗,𝑘,𝑚   𝜑,𝑓   𝑥,𝑓   𝑧,𝑓   𝑗,𝐺   𝑗,𝑘,𝑚,𝜑   𝑥,𝑗   𝑘,𝑚,𝑥   𝜑,𝑚   𝑥,𝑚   𝑧,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑘,𝑚,𝑛)

Proof of Theorem prodmolem2
Dummy variables 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1148 . . 3 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
21reximi 3178 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))
3 fveq2 6774 . . . . . 6 (𝑚 = 𝑤 → (ℤ𝑚) = (ℤ𝑤))
43sseq2d 3953 . . . . 5 (𝑚 = 𝑤 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑤)))
5 seqeq1 13724 . . . . . 6 (𝑚 = 𝑤 → seq𝑚( · , 𝐹) = seq𝑤( · , 𝐹))
65breq1d 5084 . . . . 5 (𝑚 = 𝑤 → (seq𝑚( · , 𝐹) ⇝ 𝑥 ↔ seq𝑤( · , 𝐹) ⇝ 𝑥))
74, 6anbi12d 631 . . . 4 (𝑚 = 𝑤 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)))
87cbvrexvw 3384 . . 3 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥) ↔ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥))
9 reeanv 3294 . . . . 5 (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) ↔ (∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))))
10 simprlr 777 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ 𝑥)
11 simprll 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑤))
12 uzssz 12603 . . . . . . . . . . . . . . . . 17 (ℤ𝑤) ⊆ ℤ
13 zssre 12326 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℝ
1412, 13sstri 3930 . . . . . . . . . . . . . . . 16 (ℤ𝑤) ⊆ ℝ
1511, 14sstrdi 3933 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℝ)
16 ltso 11055 . . . . . . . . . . . . . . 15 < Or ℝ
17 soss 5523 . . . . . . . . . . . . . . 15 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
1815, 16, 17mpisyl 21 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → < Or 𝐴)
19 fzfi 13692 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ Fin
20 ovex 7308 . . . . . . . . . . . . . . . . . 18 (1...𝑚) ∈ V
2120f1oen 8761 . . . . . . . . . . . . . . . . 17 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
2221ad2antll 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2322ensymd 8791 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
24 enfii 8972 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2519, 23, 24sylancr 587 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
26 fz1iso 14176 . . . . . . . . . . . . . 14 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2718, 25, 26syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
28 prodmo.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
29 prodmo.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3029ad4ant14 749 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
31 prodmo.3 . . . . . . . . . . . . . . . 16 𝐺 = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑘𝐵)
32 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑘𝐵)
33 simplrr 775 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
34 simplrl 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑤 ∈ ℤ)
35 simplll 772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) → 𝐴 ⊆ (ℤ𝑤))
3635adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑤))
37 simprlr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
38 simprr 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
3928, 30, 31, 32, 33, 34, 36, 37, 38prodmolem2a 15644 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
4039expr 457 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4140exlimdv 1936 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)))
4227, 41mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚))
43 climuni 15261 . . . . . . . . . . . 12 ((seq𝑤( · , 𝐹) ⇝ 𝑥 ∧ seq𝑤( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑚)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
4410, 42, 43syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( · , 𝐺)‘𝑚))
45 eqeq2 2750 . . . . . . . . . . 11 (𝑧 = (seq1( · , 𝐺)‘𝑚) → (𝑥 = 𝑧𝑥 = (seq1( · , 𝐺)‘𝑚)))
4644, 45syl5ibrcom 246 . . . . . . . . . 10 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧))
4746expr 457 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (𝑓:(1...𝑚)–1-1-onto𝐴 → (𝑧 = (seq1( · , 𝐺)‘𝑚) → 𝑥 = 𝑧)))
4847impd 411 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
4948exlimdv 1936 . . . . . . 7 (((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) ∧ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
5049expimpd 454 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ℤ ∧ 𝑚 ∈ ℕ)) → (((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5150rexlimdvva 3223 . . . . 5 (𝜑 → (∃𝑤 ∈ ℤ ∃𝑚 ∈ ℕ ((𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
529, 51syl5bir 242 . . . 4 (𝜑 → ((∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥) ∧ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚))) → 𝑥 = 𝑧))
5352expdimp 453 . . 3 ((𝜑 ∧ ∃𝑤 ∈ ℤ (𝐴 ⊆ (ℤ𝑤) ∧ seq𝑤( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
548, 53sylan2b 594 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
552, 54sylan2 593 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  csb 3832  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157   Or wor 5502  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  (class class class)co 7275  cen 8730  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cn 11973  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  chash 14044  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197
This theorem is referenced by:  prodmo  15646
  Copyright terms: Public domain W3C validator