Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk19w | Structured version Visualization version GIF version |
Description: Use a fixed element to eliminate 𝑃 in cdlemk19u 38963. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
cdlemk6.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk6.j | ⊢ ∨ = (join‘𝐾) |
cdlemk6.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk6.o | ⊢ ⊥ = (oc‘𝐾) |
cdlemk6.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk6.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk6.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk6.p | ⊢ 𝑃 = ( ⊥ ‘𝑊) |
cdlemk6.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk6.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
cdlemk6.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
cdlemk6.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
Ref | Expression |
---|---|
cdlemk19w | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈‘𝐹) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1147 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) | |
2 | simp2 1135 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) | |
3 | eqid 2739 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
4 | cdlemk6.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
5 | cdlemk6.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemk6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 3, 4, 5, 6 | lhpocnel 38011 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊)(le‘𝐾)𝑊)) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊)(le‘𝐾)𝑊)) |
9 | cdlemk6.p | . . . . 5 ⊢ 𝑃 = ( ⊥ ‘𝑊) | |
10 | 9 | eleq1i 2830 | . . . 4 ⊢ (𝑃 ∈ 𝐴 ↔ ( ⊥ ‘𝑊) ∈ 𝐴) |
11 | 9 | breq1i 5085 | . . . . 5 ⊢ (𝑃(le‘𝐾)𝑊 ↔ ( ⊥ ‘𝑊)(le‘𝐾)𝑊) |
12 | 11 | notbii 319 | . . . 4 ⊢ (¬ 𝑃(le‘𝐾)𝑊 ↔ ¬ ( ⊥ ‘𝑊)(le‘𝐾)𝑊) |
13 | 10, 12 | anbi12i 626 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊) ↔ (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊)(le‘𝐾)𝑊)) |
14 | 8, 13 | sylibr 233 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) |
15 | cdlemk6.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
16 | cdlemk6.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
17 | cdlemk6.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
18 | cdlemk6.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
19 | cdlemk6.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
20 | cdlemk6.z | . . 3 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
21 | cdlemk6.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
22 | cdlemk6.x | . . 3 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) | |
23 | cdlemk6.u | . . 3 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
24 | 15, 3, 16, 17, 5, 6, 18, 19, 20, 21, 22, 23 | cdlemk19u 38963 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (𝑈‘𝐹) = 𝑁) |
25 | 1, 2, 14, 24 | syl3anc 1369 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → (𝑈‘𝐹) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ifcif 4464 class class class wbr 5078 ↦ cmpt 5161 I cid 5487 ◡ccnv 5587 ↾ cres 5590 ∘ ccom 5592 ‘cfv 6430 ℩crio 7224 (class class class)co 7268 Basecbs 16893 lecple 16950 occoc 16951 joincjn 18010 meetcmee 18011 Atomscatm 37256 HLchlt 37343 LHypclh 37977 LTrncltrn 38094 trLctrl 38151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-riotaBAD 36946 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-undef 8073 df-map 8591 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-llines 37491 df-lplanes 37492 df-lvols 37493 df-lines 37494 df-psubsp 37496 df-pmap 37497 df-padd 37789 df-lhyp 37981 df-laut 37982 df-ldil 38097 df-ltrn 38098 df-trl 38152 |
This theorem is referenced by: cdlemk56w 38966 |
Copyright terms: Public domain | W3C validator |