Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk19w Structured version   Visualization version   GIF version

Theorem cdlemk19w 37994
Description: Use a fixed element to eliminate 𝑃 in cdlemk19u 37992. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemk6.b 𝐵 = (Base‘𝐾)
cdlemk6.j = (join‘𝐾)
cdlemk6.m = (meet‘𝐾)
cdlemk6.o = (oc‘𝐾)
cdlemk6.a 𝐴 = (Atoms‘𝐾)
cdlemk6.h 𝐻 = (LHyp‘𝐾)
cdlemk6.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk6.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk6.p 𝑃 = ( 𝑊)
cdlemk6.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk6.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk6.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
cdlemk6.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk19w (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (𝑈𝐹) = 𝑁)
Distinct variable groups:   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑔,𝑧   𝐹,𝑏,𝑔,𝑧   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑏,𝑔,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝑔,𝑍
Allowed substitution hints:   𝑈(𝑧,𝑔,𝑏)   (𝑧,𝑔,𝑏)   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk19w
StepHypRef Expression
1 3simpb 1143 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)))
2 simp2 1131 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (𝐹𝑇𝑁𝑇))
3 eqid 2826 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 cdlemk6.o . . . . 5 = (oc‘𝐾)
5 cdlemk6.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 cdlemk6.h . . . . 5 𝐻 = (LHyp‘𝐾)
73, 4, 5, 6lhpocnel 37040 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊)(le‘𝐾)𝑊))
873ad2ant1 1127 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊)(le‘𝐾)𝑊))
9 cdlemk6.p . . . . 5 𝑃 = ( 𝑊)
109eleq1i 2908 . . . 4 (𝑃𝐴 ↔ ( 𝑊) ∈ 𝐴)
119breq1i 5070 . . . . 5 (𝑃(le‘𝐾)𝑊 ↔ ( 𝑊)(le‘𝐾)𝑊)
1211notbii 321 . . . 4 𝑃(le‘𝐾)𝑊 ↔ ¬ ( 𝑊)(le‘𝐾)𝑊)
1310, 12anbi12i 626 . . 3 ((𝑃𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊) ↔ (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊)(le‘𝐾)𝑊))
148, 13sylibr 235 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (𝑃𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊))
15 cdlemk6.b . . 3 𝐵 = (Base‘𝐾)
16 cdlemk6.j . . 3 = (join‘𝐾)
17 cdlemk6.m . . 3 = (meet‘𝐾)
18 cdlemk6.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
19 cdlemk6.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
20 cdlemk6.z . . 3 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
21 cdlemk6.y . . 3 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
22 cdlemk6.x . . 3 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
23 cdlemk6.u . . 3 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
2415, 3, 16, 17, 5, 6, 18, 19, 20, 21, 22, 23cdlemk19u 37992 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃(le‘𝐾)𝑊)) → (𝑈𝐹) = 𝑁)
251, 2, 14, 24syl3anc 1365 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → (𝑈𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  ifcif 4470   class class class wbr 5063  cmpt 5143   I cid 5458  ccnv 5553  cres 5556  ccom 5558  cfv 6354  crio 7107  (class class class)co 7150  Basecbs 16478  lecple 16567  occoc 16568  joincjn 17549  meetcmee 17550  Atomscatm 36285  HLchlt 36372  LHypclh 37006  LTrncltrn 37123  trLctrl 37180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-riotaBAD 35975
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-undef 7935  df-map 8403  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373  df-llines 36520  df-lplanes 36521  df-lvols 36522  df-lines 36523  df-psubsp 36525  df-pmap 36526  df-padd 36818  df-lhyp 37010  df-laut 37011  df-ldil 37126  df-ltrn 37127  df-trl 37181
This theorem is referenced by:  cdlemk56w  37995
  Copyright terms: Public domain W3C validator