![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk19w | Structured version Visualization version GIF version |
Description: Use a fixed element to eliminate π in cdlemk19u 39841. (Contributed by NM, 1-Aug-2013.) |
Ref | Expression |
---|---|
cdlemk6.b | β’ π΅ = (BaseβπΎ) |
cdlemk6.j | β’ β¨ = (joinβπΎ) |
cdlemk6.m | β’ β§ = (meetβπΎ) |
cdlemk6.o | β’ β₯ = (ocβπΎ) |
cdlemk6.a | β’ π΄ = (AtomsβπΎ) |
cdlemk6.h | β’ π» = (LHypβπΎ) |
cdlemk6.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemk6.r | β’ π = ((trLβπΎ)βπ) |
cdlemk6.p | β’ π = ( β₯ βπ) |
cdlemk6.z | β’ π = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))) |
cdlemk6.y | β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) |
cdlemk6.x | β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π βπ) β (π βπΉ) β§ (π βπ) β (π βπ)) β (π§βπ) = π)) |
cdlemk6.u | β’ π = (π β π β¦ if(πΉ = π, π, π)) |
Ref | Expression |
---|---|
cdlemk19w | β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π) β§ (π βπΉ) = (π βπ)) β (πβπΉ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1150 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π) β§ (π βπΉ) = (π βπ)) β ((πΎ β HL β§ π β π») β§ (π βπΉ) = (π βπ))) | |
2 | simp2 1138 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π) β§ (π βπΉ) = (π βπ)) β (πΉ β π β§ π β π)) | |
3 | eqid 2733 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
4 | cdlemk6.o | . . . . 5 β’ β₯ = (ocβπΎ) | |
5 | cdlemk6.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemk6.h | . . . . 5 β’ π» = (LHypβπΎ) | |
7 | 3, 4, 5, 6 | lhpocnel 38889 | . . . 4 β’ ((πΎ β HL β§ π β π») β (( β₯ βπ) β π΄ β§ Β¬ ( β₯ βπ)(leβπΎ)π)) |
8 | 7 | 3ad2ant1 1134 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π) β§ (π βπΉ) = (π βπ)) β (( β₯ βπ) β π΄ β§ Β¬ ( β₯ βπ)(leβπΎ)π)) |
9 | cdlemk6.p | . . . . 5 β’ π = ( β₯ βπ) | |
10 | 9 | eleq1i 2825 | . . . 4 β’ (π β π΄ β ( β₯ βπ) β π΄) |
11 | 9 | breq1i 5156 | . . . . 5 β’ (π(leβπΎ)π β ( β₯ βπ)(leβπΎ)π) |
12 | 11 | notbii 320 | . . . 4 β’ (Β¬ π(leβπΎ)π β Β¬ ( β₯ βπ)(leβπΎ)π) |
13 | 10, 12 | anbi12i 628 | . . 3 β’ ((π β π΄ β§ Β¬ π(leβπΎ)π) β (( β₯ βπ) β π΄ β§ Β¬ ( β₯ βπ)(leβπΎ)π)) |
14 | 8, 13 | sylibr 233 | . 2 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π) β§ (π βπΉ) = (π βπ)) β (π β π΄ β§ Β¬ π(leβπΎ)π)) |
15 | cdlemk6.b | . . 3 β’ π΅ = (BaseβπΎ) | |
16 | cdlemk6.j | . . 3 β’ β¨ = (joinβπΎ) | |
17 | cdlemk6.m | . . 3 β’ β§ = (meetβπΎ) | |
18 | cdlemk6.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
19 | cdlemk6.r | . . 3 β’ π = ((trLβπΎ)βπ) | |
20 | cdlemk6.z | . . 3 β’ π = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))) | |
21 | cdlemk6.y | . . 3 β’ π = ((π β¨ (π βπ)) β§ (π β¨ (π β(π β β‘π)))) | |
22 | cdlemk6.x | . . 3 β’ π = (β©π§ β π βπ β π ((π β ( I βΎ π΅) β§ (π βπ) β (π βπΉ) β§ (π βπ) β (π βπ)) β (π§βπ) = π)) | |
23 | cdlemk6.u | . . 3 β’ π = (π β π β¦ if(πΉ = π, π, π)) | |
24 | 15, 3, 16, 17, 5, 6, 18, 19, 20, 21, 22, 23 | cdlemk19u 39841 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π βπΉ) = (π βπ)) β§ (πΉ β π β§ π β π) β§ (π β π΄ β§ Β¬ π(leβπΎ)π)) β (πβπΉ) = π) |
25 | 1, 2, 14, 24 | syl3anc 1372 | 1 β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π) β§ (π βπΉ) = (π βπ)) β (πβπΉ) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 βwral 3062 ifcif 4529 class class class wbr 5149 β¦ cmpt 5232 I cid 5574 β‘ccnv 5676 βΎ cres 5679 β ccom 5681 βcfv 6544 β©crio 7364 (class class class)co 7409 Basecbs 17144 lecple 17204 occoc 17205 joincjn 18264 meetcmee 18265 Atomscatm 38133 HLchlt 38220 LHypclh 38855 LTrncltrn 38972 trLctrl 39029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-riotaBAD 37823 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-undef 8258 df-map 8822 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 df-laut 38860 df-ldil 38975 df-ltrn 38976 df-trl 39030 |
This theorem is referenced by: cdlemk56w 39844 |
Copyright terms: Public domain | W3C validator |