Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem3 Structured version   Visualization version   GIF version

Theorem lincresunit3lem3 45703
Description: Lemma 3 for lincresunit3 45710. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit3lem3.b 𝐵 = (Base‘𝑀)
lincresunit3lem3.r 𝑅 = (Scalar‘𝑀)
lincresunit3lem3.e 𝐸 = (Base‘𝑅)
lincresunit3lem3.u 𝑈 = (Unit‘𝑅)
lincresunit3lem3.n 𝑁 = (invg𝑅)
lincresunit3lem3.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincresunit3lem3 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lincresunit3lem3
StepHypRef Expression
1 3simpa 1146 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
21adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
3 lincresunit3lem3.b . . . . . . . 8 𝐵 = (Base‘𝑀)
4 lincresunit3lem3.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
5 lincresunit3lem3.t . . . . . . . 8 · = ( ·𝑠𝑀)
6 eqid 2738 . . . . . . . 8 (1r𝑅) = (1r𝑅)
73, 4, 5, 6lmodvs1 20066 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
82, 7syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
94lmodring 20046 . . . . . . . . . . . 12 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1093ad2ant1 1131 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
1110adantr 480 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
12 lincresunit3lem3.u . . . . . . . . . . . . 13 𝑈 = (Unit‘𝑅)
13 lincresunit3lem3.n . . . . . . . . . . . . 13 𝑁 = (invg𝑅)
1412, 13unitnegcl 19838 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
159, 14sylan 579 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
16153ad2antl1 1183 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
1711, 16jca 511 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
18 eqid 2738 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
19 eqid 2738 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2012, 18, 19, 6unitlinv 19834 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2117, 20syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2221eqcomd 2744 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (1r𝑅) = (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)))
2322oveq1d 7270 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
248, 23eqtr3d 2780 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
2524adantr 480 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
26 simpl1 1189 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑀 ∈ LMod)
27 lincresunit3lem3.e . . . . . . . . . . 11 𝐸 = (Base‘𝑅)
2812, 18, 27ringinvcl 19833 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
2917, 28syl 17 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
304lmodfgrp 20047 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
31303ad2ant1 1131 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
3227, 12unitcl 19816 . . . . . . . . . 10 (𝐴𝑈𝐴𝐸)
3327, 13grpinvcl 18542 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐴𝐸) → (𝑁𝐴) ∈ 𝐸)
3431, 32, 33syl2an 595 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝐸)
35 simpl2 1190 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋𝐵)
3629, 34, 353jca 1126 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵))
3726, 36jca 511 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
3837adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
393, 4, 5, 27, 19lmodvsass 20063 . . . . . 6 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
4038, 39syl 17 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
41 oveq2 7263 . . . . . 6 (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4241adantl 481 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4326adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑀 ∈ LMod)
44 simpl3 1191 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑌𝐵)
4529, 34, 443jca 1126 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4645adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4743, 46jca 511 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)))
483, 4, 5, 27, 19lmodvsass 20063 . . . . . . 7 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4947, 48syl 17 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
5017adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
5150, 20syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
5251oveq1d 7270 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = ((1r𝑅) · 𝑌))
5349, 52eqtr3d 2780 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)) = ((1r𝑅) · 𝑌))
5440, 42, 533eqtrd 2782 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = ((1r𝑅) · 𝑌))
55 3simpb 1147 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5655adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5756adantr 480 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
583, 4, 5, 6lmodvs1 20066 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5957, 58syl 17 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((1r𝑅) · 𝑌) = 𝑌)
6025, 54, 593eqtrd 2782 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = 𝑌)
6160ex 412 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → 𝑋 = 𝑌))
62 oveq2 7263 . 2 (𝑋 = 𝑌 → ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌))
6361, 62impbid1 224 1 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492  invgcminusg 18493  1rcur 19652  Ringcrg 19698  Unitcui 19796  invrcinvr 19828  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-lmod 20040
This theorem is referenced by:  lincresunit3  45710
  Copyright terms: Public domain W3C validator