Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem3 Structured version   Visualization version   GIF version

Theorem lincresunit3lem3 48203
Description: Lemma 3 for lincresunit3 48210. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit3lem3.b 𝐵 = (Base‘𝑀)
lincresunit3lem3.r 𝑅 = (Scalar‘𝑀)
lincresunit3lem3.e 𝐸 = (Base‘𝑅)
lincresunit3lem3.u 𝑈 = (Unit‘𝑅)
lincresunit3lem3.n 𝑁 = (invg𝑅)
lincresunit3lem3.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincresunit3lem3 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lincresunit3lem3
StepHypRef Expression
1 3simpa 1148 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
21adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
3 lincresunit3lem3.b . . . . . . . 8 𝐵 = (Base‘𝑀)
4 lincresunit3lem3.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
5 lincresunit3lem3.t . . . . . . . 8 · = ( ·𝑠𝑀)
6 eqid 2740 . . . . . . . 8 (1r𝑅) = (1r𝑅)
73, 4, 5, 6lmodvs1 20910 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
82, 7syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
94lmodring 20888 . . . . . . . . . . . 12 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1093ad2ant1 1133 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
1110adantr 480 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
12 lincresunit3lem3.u . . . . . . . . . . . . 13 𝑈 = (Unit‘𝑅)
13 lincresunit3lem3.n . . . . . . . . . . . . 13 𝑁 = (invg𝑅)
1412, 13unitnegcl 20423 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
159, 14sylan 579 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
16153ad2antl1 1185 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
1711, 16jca 511 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
18 eqid 2740 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
19 eqid 2740 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2012, 18, 19, 6unitlinv 20419 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2117, 20syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2221eqcomd 2746 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (1r𝑅) = (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)))
2322oveq1d 7463 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
248, 23eqtr3d 2782 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
2524adantr 480 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
26 simpl1 1191 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑀 ∈ LMod)
27 lincresunit3lem3.e . . . . . . . . . . 11 𝐸 = (Base‘𝑅)
2812, 18, 27ringinvcl 20418 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
2917, 28syl 17 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
304lmodfgrp 20889 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
31303ad2ant1 1133 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
3227, 12unitcl 20401 . . . . . . . . . 10 (𝐴𝑈𝐴𝐸)
3327, 13grpinvcl 19027 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐴𝐸) → (𝑁𝐴) ∈ 𝐸)
3431, 32, 33syl2an 595 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝐸)
35 simpl2 1192 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋𝐵)
3629, 34, 353jca 1128 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵))
3726, 36jca 511 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
3837adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
393, 4, 5, 27, 19lmodvsass 20907 . . . . . 6 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
4038, 39syl 17 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
41 oveq2 7456 . . . . . 6 (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4241adantl 481 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4326adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑀 ∈ LMod)
44 simpl3 1193 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑌𝐵)
4529, 34, 443jca 1128 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4645adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4743, 46jca 511 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)))
483, 4, 5, 27, 19lmodvsass 20907 . . . . . . 7 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4947, 48syl 17 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
5017adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
5150, 20syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
5251oveq1d 7463 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = ((1r𝑅) · 𝑌))
5349, 52eqtr3d 2782 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)) = ((1r𝑅) · 𝑌))
5440, 42, 533eqtrd 2784 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = ((1r𝑅) · 𝑌))
55 3simpb 1149 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5655adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5756adantr 480 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
583, 4, 5, 6lmodvs1 20910 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5957, 58syl 17 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((1r𝑅) · 𝑌) = 𝑌)
6025, 54, 593eqtrd 2784 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = 𝑌)
6160ex 412 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → 𝑋 = 𝑌))
62 oveq2 7456 . 2 (𝑋 = 𝑌 → ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌))
6361, 62impbid1 225 1 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  invgcminusg 18974  1rcur 20208  Ringcrg 20260  Unitcui 20381  invrcinvr 20413  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-lmod 20882
This theorem is referenced by:  lincresunit3  48210
  Copyright terms: Public domain W3C validator