Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem3 Structured version   Visualization version   GIF version

Theorem lincresunit3lem3 45341
Description: Lemma 3 for lincresunit3 45348. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit3lem3.b 𝐵 = (Base‘𝑀)
lincresunit3lem3.r 𝑅 = (Scalar‘𝑀)
lincresunit3lem3.e 𝐸 = (Base‘𝑅)
lincresunit3lem3.u 𝑈 = (Unit‘𝑅)
lincresunit3lem3.n 𝑁 = (invg𝑅)
lincresunit3lem3.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincresunit3lem3 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lincresunit3lem3
StepHypRef Expression
1 3simpa 1149 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
21adantr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
3 lincresunit3lem3.b . . . . . . . 8 𝐵 = (Base‘𝑀)
4 lincresunit3lem3.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
5 lincresunit3lem3.t . . . . . . . 8 · = ( ·𝑠𝑀)
6 eqid 2738 . . . . . . . 8 (1r𝑅) = (1r𝑅)
73, 4, 5, 6lmodvs1 19782 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
82, 7syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
94lmodring 19762 . . . . . . . . . . . 12 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1093ad2ant1 1134 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
1110adantr 484 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
12 lincresunit3lem3.u . . . . . . . . . . . . 13 𝑈 = (Unit‘𝑅)
13 lincresunit3lem3.n . . . . . . . . . . . . 13 𝑁 = (invg𝑅)
1412, 13unitnegcl 19554 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
159, 14sylan 583 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
16153ad2antl1 1186 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
1711, 16jca 515 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
18 eqid 2738 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
19 eqid 2738 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2012, 18, 19, 6unitlinv 19550 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2117, 20syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2221eqcomd 2744 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (1r𝑅) = (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)))
2322oveq1d 7186 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
248, 23eqtr3d 2775 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
2524adantr 484 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
26 simpl1 1192 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑀 ∈ LMod)
27 lincresunit3lem3.e . . . . . . . . . . 11 𝐸 = (Base‘𝑅)
2812, 18, 27ringinvcl 19549 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
2917, 28syl 17 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
304lmodfgrp 19763 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
31303ad2ant1 1134 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
3227, 12unitcl 19532 . . . . . . . . . 10 (𝐴𝑈𝐴𝐸)
3327, 13grpinvcl 18270 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐴𝐸) → (𝑁𝐴) ∈ 𝐸)
3431, 32, 33syl2an 599 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝐸)
35 simpl2 1193 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋𝐵)
3629, 34, 353jca 1129 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵))
3726, 36jca 515 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
3837adantr 484 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
393, 4, 5, 27, 19lmodvsass 19779 . . . . . 6 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
4038, 39syl 17 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
41 oveq2 7179 . . . . . 6 (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4241adantl 485 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4326adantr 484 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑀 ∈ LMod)
44 simpl3 1194 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑌𝐵)
4529, 34, 443jca 1129 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4645adantr 484 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4743, 46jca 515 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)))
483, 4, 5, 27, 19lmodvsass 19779 . . . . . . 7 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4947, 48syl 17 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
5017adantr 484 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
5150, 20syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
5251oveq1d 7186 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = ((1r𝑅) · 𝑌))
5349, 52eqtr3d 2775 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)) = ((1r𝑅) · 𝑌))
5440, 42, 533eqtrd 2777 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = ((1r𝑅) · 𝑌))
55 3simpb 1150 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5655adantr 484 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5756adantr 484 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
583, 4, 5, 6lmodvs1 19782 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5957, 58syl 17 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((1r𝑅) · 𝑌) = 𝑌)
6025, 54, 593eqtrd 2777 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = 𝑌)
6160ex 416 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → 𝑋 = 𝑌))
62 oveq2 7179 . 2 (𝑋 = 𝑌 → ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌))
6361, 62impbid1 228 1 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  cfv 6340  (class class class)co 7171  Basecbs 16587  .rcmulr 16670  Scalarcsca 16672   ·𝑠 cvsca 16673  Grpcgrp 18220  invgcminusg 18221  1rcur 19371  Ringcrg 19417  Unitcui 19512  invrcinvr 19544  LModclmod 19754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-tpos 7922  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-2 11780  df-3 11781  df-ndx 16590  df-slot 16591  df-base 16593  df-sets 16594  df-ress 16595  df-plusg 16682  df-mulr 16683  df-0g 16819  df-mgm 17969  df-sgrp 18018  df-mnd 18029  df-grp 18223  df-minusg 18224  df-mgp 19360  df-ur 19372  df-ring 19419  df-oppr 19496  df-dvdsr 19514  df-unit 19515  df-invr 19545  df-lmod 19756
This theorem is referenced by:  lincresunit3  45348
  Copyright terms: Public domain W3C validator