Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaras | Structured version Visualization version GIF version |
Description: Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigaras | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | simp3 1137 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
4 | 2, 3 | addcld 10994 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ) |
5 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
6 | 5 | sigarac 44368 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = -((𝐵 + 𝐶)𝐺𝐴)) |
7 | 1, 4, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = -((𝐵 + 𝐶)𝐺𝐴)) |
8 | 5 | sigaraf 44369 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)𝐺𝐴) = ((𝐵𝐺𝐴) + (𝐶𝐺𝐴))) |
9 | 8 | negeqd 11215 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵 + 𝐶)𝐺𝐴) = -((𝐵𝐺𝐴) + (𝐶𝐺𝐴))) |
10 | 9 | 3com12 1122 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵 + 𝐶)𝐺𝐴) = -((𝐵𝐺𝐴) + (𝐶𝐺𝐴))) |
11 | 3simpa 1147 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
12 | 11 | ancomd 462 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
13 | 5 | sigarim 44367 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ) |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ) |
15 | 14 | recnd 11003 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ) |
16 | 3simpb 1148 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
17 | 16 | ancomd 462 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
18 | 5 | sigarim 44367 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℝ) |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℝ) |
20 | 19 | recnd 11003 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℂ) |
21 | 15, 20 | negdid 11345 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵𝐺𝐴) + (𝐶𝐺𝐴)) = (-(𝐵𝐺𝐴) + -(𝐶𝐺𝐴))) |
22 | 10, 21 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵 + 𝐶)𝐺𝐴) = (-(𝐵𝐺𝐴) + -(𝐶𝐺𝐴))) |
23 | 5 | sigarac 44368 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
24 | 1, 2, 23 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
25 | 24 | eqcomd 2744 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐵𝐺𝐴) = (𝐴𝐺𝐵)) |
26 | 5 | sigarac 44368 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) = -(𝐶𝐺𝐴)) |
27 | 1, 3, 26 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) = -(𝐶𝐺𝐴)) |
28 | 27 | eqcomd 2744 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐶𝐺𝐴) = (𝐴𝐺𝐶)) |
29 | 25, 28 | oveq12d 7293 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-(𝐵𝐺𝐴) + -(𝐶𝐺𝐴)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) |
30 | 7, 22, 29 | 3eqtrd 2782 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ℂcc 10869 ℝcr 10870 + caddc 10874 · cmul 10876 -cneg 11206 ∗ccj 14807 ℑcim 14809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-cj 14810 df-re 14811 df-im 14812 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |