Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaras | Structured version Visualization version GIF version |
Description: Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
Ref | Expression |
---|---|
sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
Ref | Expression |
---|---|
sigaras | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | simp2 1139 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | simp3 1140 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
4 | 2, 3 | addcld 10852 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ) |
5 | sigar | . . . 4 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
6 | 5 | sigarac 44040 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = -((𝐵 + 𝐶)𝐺𝐴)) |
7 | 1, 4, 6 | syl2anc 587 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = -((𝐵 + 𝐶)𝐺𝐴)) |
8 | 5 | sigaraf 44041 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)𝐺𝐴) = ((𝐵𝐺𝐴) + (𝐶𝐺𝐴))) |
9 | 8 | negeqd 11072 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵 + 𝐶)𝐺𝐴) = -((𝐵𝐺𝐴) + (𝐶𝐺𝐴))) |
10 | 9 | 3com12 1125 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵 + 𝐶)𝐺𝐴) = -((𝐵𝐺𝐴) + (𝐶𝐺𝐴))) |
11 | 3simpa 1150 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
12 | 11 | ancomd 465 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
13 | 5 | sigarim 44039 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ) |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℝ) |
15 | 14 | recnd 10861 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐺𝐴) ∈ ℂ) |
16 | 3simpb 1151 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ)) | |
17 | 16 | ancomd 465 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
18 | 5 | sigarim 44039 | . . . . . 6 ⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℝ) |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℝ) |
20 | 19 | recnd 10861 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶𝐺𝐴) ∈ ℂ) |
21 | 15, 20 | negdid 11202 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵𝐺𝐴) + (𝐶𝐺𝐴)) = (-(𝐵𝐺𝐴) + -(𝐶𝐺𝐴))) |
22 | 10, 21 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -((𝐵 + 𝐶)𝐺𝐴) = (-(𝐵𝐺𝐴) + -(𝐶𝐺𝐴))) |
23 | 5 | sigarac 44040 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
24 | 1, 2, 23 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
25 | 24 | eqcomd 2743 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐵𝐺𝐴) = (𝐴𝐺𝐵)) |
26 | 5 | sigarac 44040 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) = -(𝐶𝐺𝐴)) |
27 | 1, 3, 26 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺𝐶) = -(𝐶𝐺𝐴)) |
28 | 27 | eqcomd 2743 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → -(𝐶𝐺𝐴) = (𝐴𝐺𝐶)) |
29 | 25, 28 | oveq12d 7231 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (-(𝐵𝐺𝐴) + -(𝐶𝐺𝐴)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) |
30 | 7, 22, 29 | 3eqtrd 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 ℂcc 10727 ℝcr 10728 + caddc 10732 · cmul 10734 -cneg 11063 ∗ccj 14659 ℑcim 14661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-2 11893 df-cj 14662 df-re 14663 df-im 14664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |