![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csrgbinom | Structured version Visualization version GIF version |
Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
srgbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
srgbinom.m | ⊢ × = (.r‘𝑅) |
srgbinom.t | ⊢ · = (.g‘𝑅) |
srgbinom.a | ⊢ + = (+g‘𝑅) |
srgbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srgbinom.e | ⊢ ↑ = (.g‘𝐺) |
Ref | Expression |
---|---|
csrgbinom | ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1146 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0)) | |
2 | 1 | adantr 480 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0)) |
3 | simprl 768 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
4 | simprr 770 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
5 | simpl2 1189 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐺 ∈ CMnd) | |
6 | srgbinom.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
7 | srgbinom.s | . . . . 5 ⊢ 𝑆 = (Base‘𝑅) | |
8 | 6, 7 | mgpbas 20037 | . . . 4 ⊢ 𝑆 = (Base‘𝐺) |
9 | srgbinom.m | . . . . 5 ⊢ × = (.r‘𝑅) | |
10 | 6, 9 | mgpplusg 20035 | . . . 4 ⊢ × = (+g‘𝐺) |
11 | 8, 10 | cmncom 19710 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
12 | 5, 3, 4, 11 | syl3anc 1368 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
13 | srgbinom.t | . . 3 ⊢ · = (.g‘𝑅) | |
14 | srgbinom.a | . . 3 ⊢ + = (+g‘𝑅) | |
15 | srgbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
16 | 7, 9, 13, 14, 6, 15 | srgbinom 20128 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
17 | 2, 3, 4, 12, 16 | syl13anc 1369 | 1 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5222 ‘cfv 6534 (class class class)co 7402 0cc0 11107 − cmin 11442 ℕ0cn0 12470 ...cfz 13482 Ccbc 14260 Basecbs 17145 +gcplusg 17198 .rcmulr 17199 Σg cgsu 17387 .gcmg 18987 CMndccmn 19692 mulGrpcmgp 20031 SRingcsrg 20083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-n0 12471 df-z 12557 df-uz 12821 df-rp 12973 df-fz 13483 df-fzo 13626 df-seq 13965 df-fac 14232 df-bc 14261 df-hash 14289 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-0g 17388 df-gsum 17389 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-mulg 18988 df-cntz 19225 df-cmn 19694 df-mgp 20032 df-ur 20079 df-srg 20084 |
This theorem is referenced by: crngbinom 20226 |
Copyright terms: Public domain | W3C validator |