| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csrgbinom | Structured version Visualization version GIF version | ||
| Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgbinom.m | ⊢ × = (.r‘𝑅) |
| srgbinom.t | ⊢ · = (.g‘𝑅) |
| srgbinom.a | ⊢ + = (+g‘𝑅) |
| srgbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgbinom.e | ⊢ ↑ = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| csrgbinom | ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0)) |
| 3 | simprl 770 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
| 4 | simprr 772 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
| 5 | simpl2 1193 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐺 ∈ CMnd) | |
| 6 | srgbinom.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 7 | srgbinom.s | . . . . 5 ⊢ 𝑆 = (Base‘𝑅) | |
| 8 | 6, 7 | mgpbas 20065 | . . . 4 ⊢ 𝑆 = (Base‘𝐺) |
| 9 | srgbinom.m | . . . . 5 ⊢ × = (.r‘𝑅) | |
| 10 | 6, 9 | mgpplusg 20064 | . . . 4 ⊢ × = (+g‘𝐺) |
| 11 | 8, 10 | cmncom 19712 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 12 | 5, 3, 4, 11 | syl3anc 1373 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 13 | srgbinom.t | . . 3 ⊢ · = (.g‘𝑅) | |
| 14 | srgbinom.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 15 | srgbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
| 16 | 7, 9, 13, 14, 6, 15 | srgbinom 20151 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 17 | 2, 3, 4, 12, 16 | syl13anc 1374 | 1 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 0cc0 11013 − cmin 11351 ℕ0cn0 12388 ...cfz 13409 Ccbc 14211 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 Σg cgsu 17346 .gcmg 18982 CMndccmn 19694 mulGrpcmgp 20060 SRingcsrg 20106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-fac 14183 df-bc 14212 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-mgp 20061 df-ur 20102 df-srg 20107 |
| This theorem is referenced by: crngbinom 20255 |
| Copyright terms: Public domain | W3C validator |