| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csrgbinom | Structured version Visualization version GIF version | ||
| Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgbinom.m | ⊢ × = (.r‘𝑅) |
| srgbinom.t | ⊢ · = (.g‘𝑅) |
| srgbinom.a | ⊢ + = (+g‘𝑅) |
| srgbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgbinom.e | ⊢ ↑ = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| csrgbinom | ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0)) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0)) |
| 3 | simprl 770 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐴 ∈ 𝑆) | |
| 4 | simprr 772 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐵 ∈ 𝑆) | |
| 5 | simpl2 1193 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → 𝐺 ∈ CMnd) | |
| 6 | srgbinom.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 7 | srgbinom.s | . . . . 5 ⊢ 𝑆 = (Base‘𝑅) | |
| 8 | 6, 7 | mgpbas 20054 | . . . 4 ⊢ 𝑆 = (Base‘𝐺) |
| 9 | srgbinom.m | . . . . 5 ⊢ × = (.r‘𝑅) | |
| 10 | 6, 9 | mgpplusg 20053 | . . . 4 ⊢ × = (+g‘𝐺) |
| 11 | 8, 10 | cmncom 19728 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 12 | 5, 3, 4, 11 | syl3anc 1373 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 13 | srgbinom.t | . . 3 ⊢ · = (.g‘𝑅) | |
| 14 | srgbinom.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 15 | srgbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
| 16 | 7, 9, 13, 14, 6, 15 | srgbinom 20140 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ (𝐴 × 𝐵) = (𝐵 × 𝐴))) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 17 | 2, 3, 4, 12, 16 | syl13anc 1374 | 1 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 − cmin 11405 ℕ0cn0 12442 ...cfz 13468 Ccbc 14267 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Σg cgsu 17403 .gcmg 18999 CMndccmn 19710 mulGrpcmgp 20049 SRingcsrg 20095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-fac 14239 df-bc 14268 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-mgp 20050 df-ur 20091 df-srg 20096 |
| This theorem is referenced by: crngbinom 20244 |
| Copyright terms: Public domain | W3C validator |