Proof of Theorem xppreima2
| Step | Hyp | Ref
| Expression |
| 1 | | xppreima2.3 |
. . . 4
⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
| 2 | 1 | funmpt2 6580 |
. . 3
⊢ Fun 𝐻 |
| 3 | | xppreima2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 4 | 3 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 5 | | xppreima2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝐴⟶𝐶) |
| 6 | 5 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐶) |
| 7 | | opelxp 5695 |
. . . . . . 7
⊢
(〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶) ↔ ((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐶)) |
| 8 | 4, 6, 7 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
| 9 | 8, 1 | fmptd 7109 |
. . . . 5
⊢ (𝜑 → 𝐻:𝐴⟶(𝐵 × 𝐶)) |
| 10 | 9 | frnd 6719 |
. . . 4
⊢ (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶)) |
| 11 | | xpss 5675 |
. . . 4
⊢ (𝐵 × 𝐶) ⊆ (V × V) |
| 12 | 10, 11 | sstrdi 3976 |
. . 3
⊢ (𝜑 → ran 𝐻 ⊆ (V × V)) |
| 13 | | xppreima 32628 |
. . 3
⊢ ((Fun
𝐻 ∧ ran 𝐻 ⊆ (V × V)) →
(◡𝐻 “ (𝑌 × 𝑍)) = ((◡(1st ∘ 𝐻) “ 𝑌) ∩ (◡(2nd ∘ 𝐻) “ 𝑍))) |
| 14 | 2, 12, 13 | sylancr 587 |
. 2
⊢ (𝜑 → (◡𝐻 “ (𝑌 × 𝑍)) = ((◡(1st ∘ 𝐻) “ 𝑌) ∩ (◡(2nd ∘ 𝐻) “ 𝑍))) |
| 15 | | fo1st 8013 |
. . . . . . . . 9
⊢
1st :V–onto→V |
| 16 | | fofn 6797 |
. . . . . . . . 9
⊢
(1st :V–onto→V → 1st Fn V) |
| 17 | 15, 16 | ax-mp 5 |
. . . . . . . 8
⊢
1st Fn V |
| 18 | | opex 5444 |
. . . . . . . . 9
⊢
〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ V |
| 19 | 18, 1 | fnmpti 6686 |
. . . . . . . 8
⊢ 𝐻 Fn 𝐴 |
| 20 | | ssv 3988 |
. . . . . . . 8
⊢ ran 𝐻 ⊆ V |
| 21 | | fnco 6661 |
. . . . . . . 8
⊢
((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st ∘
𝐻) Fn 𝐴) |
| 22 | 17, 19, 20, 21 | mp3an 1463 |
. . . . . . 7
⊢
(1st ∘ 𝐻) Fn 𝐴 |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (1st ∘
𝐻) Fn 𝐴) |
| 24 | 3 | ffnd 6712 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 25 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Fun 𝐻) |
| 26 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran 𝐻 ⊆ (V × V)) |
| 27 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 28 | 18, 1 | dmmpti 6687 |
. . . . . . . . . . 11
⊢ dom 𝐻 = 𝐴 |
| 29 | 27, 28 | eleqtrrdi 2846 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐻) |
| 30 | | opfv 32627 |
. . . . . . . . . 10
⊢ (((Fun
𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧
𝑥 ∈ dom 𝐻) → (𝐻‘𝑥) = 〈((1st ∘ 𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉) |
| 31 | 25, 26, 29, 30 | syl21anc 837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = 〈((1st ∘ 𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉) |
| 32 | 1 | fvmpt2 7002 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) → (𝐻‘𝑥) = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
| 33 | 27, 8, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
| 34 | 31, 33 | eqtr3d 2773 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈((1st ∘
𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉 = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
| 35 | | fvex 6894 |
. . . . . . . . 9
⊢
((1st ∘ 𝐻)‘𝑥) ∈ V |
| 36 | | fvex 6894 |
. . . . . . . . 9
⊢
((2nd ∘ 𝐻)‘𝑥) ∈ V |
| 37 | 35, 36 | opth 5456 |
. . . . . . . 8
⊢
(〈((1st ∘ 𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉 = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ↔ (((1st ∘
𝐻)‘𝑥) = (𝐹‘𝑥) ∧ ((2nd ∘ 𝐻)‘𝑥) = (𝐺‘𝑥))) |
| 38 | 34, 37 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((1st ∘ 𝐻)‘𝑥) = (𝐹‘𝑥) ∧ ((2nd ∘ 𝐻)‘𝑥) = (𝐺‘𝑥))) |
| 39 | 38 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ∘ 𝐻)‘𝑥) = (𝐹‘𝑥)) |
| 40 | 23, 24, 39 | eqfnfvd 7029 |
. . . . 5
⊢ (𝜑 → (1st ∘
𝐻) = 𝐹) |
| 41 | 40 | cnveqd 5860 |
. . . 4
⊢ (𝜑 → ◡(1st ∘ 𝐻) = ◡𝐹) |
| 42 | 41 | imaeq1d 6051 |
. . 3
⊢ (𝜑 → (◡(1st ∘ 𝐻) “ 𝑌) = (◡𝐹 “ 𝑌)) |
| 43 | | fo2nd 8014 |
. . . . . . . . 9
⊢
2nd :V–onto→V |
| 44 | | fofn 6797 |
. . . . . . . . 9
⊢
(2nd :V–onto→V → 2nd Fn V) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
⊢
2nd Fn V |
| 46 | | fnco 6661 |
. . . . . . . 8
⊢
((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd ∘
𝐻) Fn 𝐴) |
| 47 | 45, 19, 20, 46 | mp3an 1463 |
. . . . . . 7
⊢
(2nd ∘ 𝐻) Fn 𝐴 |
| 48 | 47 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (2nd ∘
𝐻) Fn 𝐴) |
| 49 | 5 | ffnd 6712 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 50 | 38 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((2nd ∘ 𝐻)‘𝑥) = (𝐺‘𝑥)) |
| 51 | 48, 49, 50 | eqfnfvd 7029 |
. . . . 5
⊢ (𝜑 → (2nd ∘
𝐻) = 𝐺) |
| 52 | 51 | cnveqd 5860 |
. . . 4
⊢ (𝜑 → ◡(2nd ∘ 𝐻) = ◡𝐺) |
| 53 | 52 | imaeq1d 6051 |
. . 3
⊢ (𝜑 → (◡(2nd ∘ 𝐻) “ 𝑍) = (◡𝐺 “ 𝑍)) |
| 54 | 42, 53 | ineq12d 4201 |
. 2
⊢ (𝜑 → ((◡(1st ∘ 𝐻) “ 𝑌) ∩ (◡(2nd ∘ 𝐻) “ 𝑍)) = ((◡𝐹 “ 𝑌) ∩ (◡𝐺 “ 𝑍))) |
| 55 | 14, 54 | eqtrd 2771 |
1
⊢ (𝜑 → (◡𝐻 “ (𝑌 × 𝑍)) = ((◡𝐹 “ 𝑌) ∩ (◡𝐺 “ 𝑍))) |