Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 32345
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (𝜑𝐹:𝐴𝐵)
xppreima2.2 (𝜑𝐺:𝐴𝐶)
xppreima2.3 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
xppreima2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
21funmpt2 6577 . . 3 Fun 𝐻
3 xppreima2.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
43ffvelcdmda 7076 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5 xppreima2.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
65ffvelcdmda 7076 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
7 opelxp 5702 . . . . . . 7 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶))
84, 6, 7sylanbrc 582 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
98, 1fmptd 7105 . . . . 5 (𝜑𝐻:𝐴⟶(𝐵 × 𝐶))
109frnd 6715 . . . 4 (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶))
11 xpss 5682 . . . 4 (𝐵 × 𝐶) ⊆ (V × V)
1210, 11sstrdi 3986 . . 3 (𝜑 → ran 𝐻 ⊆ (V × V))
13 xppreima 32340 . . 3 ((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
142, 12, 13sylancr 586 . 2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
15 fo1st 7988 . . . . . . . . 9 1st :V–onto→V
16 fofn 6797 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1715, 16ax-mp 5 . . . . . . . 8 1st Fn V
18 opex 5454 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
1918, 1fnmpti 6683 . . . . . . . 8 𝐻 Fn 𝐴
20 ssv 3998 . . . . . . . 8 ran 𝐻 ⊆ V
21 fnco 6657 . . . . . . . 8 ((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st𝐻) Fn 𝐴)
2217, 19, 20, 21mp3an 1457 . . . . . . 7 (1st𝐻) Fn 𝐴
2322a1i 11 . . . . . 6 (𝜑 → (1st𝐻) Fn 𝐴)
243ffnd 6708 . . . . . 6 (𝜑𝐹 Fn 𝐴)
252a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
2612adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ (V × V))
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
2818, 1dmmpti 6684 . . . . . . . . . . 11 dom 𝐻 = 𝐴
2927, 28eleqtrrdi 2836 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐻)
30 opfv 32339 . . . . . . . . . 10 (((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐻) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
3125, 26, 29, 30syl21anc 835 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
321fvmpt2 6999 . . . . . . . . . 10 ((𝑥𝐴 ∧ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶)) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3327, 8, 32syl2anc 583 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3431, 33eqtr3d 2766 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
35 fvex 6894 . . . . . . . . 9 ((1st𝐻)‘𝑥) ∈ V
36 fvex 6894 . . . . . . . . 9 ((2nd𝐻)‘𝑥) ∈ V
3735, 36opth 5466 . . . . . . . 8 (⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩ ↔ (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3834, 37sylib 217 . . . . . . 7 ((𝜑𝑥𝐴) → (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3938simpld 494 . . . . . 6 ((𝜑𝑥𝐴) → ((1st𝐻)‘𝑥) = (𝐹𝑥))
4023, 24, 39eqfnfvd 7025 . . . . 5 (𝜑 → (1st𝐻) = 𝐹)
4140cnveqd 5865 . . . 4 (𝜑(1st𝐻) = 𝐹)
4241imaeq1d 6048 . . 3 (𝜑 → ((1st𝐻) “ 𝑌) = (𝐹𝑌))
43 fo2nd 7989 . . . . . . . . 9 2nd :V–onto→V
44 fofn 6797 . . . . . . . . 9 (2nd :V–onto→V → 2nd Fn V)
4543, 44ax-mp 5 . . . . . . . 8 2nd Fn V
46 fnco 6657 . . . . . . . 8 ((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd𝐻) Fn 𝐴)
4745, 19, 20, 46mp3an 1457 . . . . . . 7 (2nd𝐻) Fn 𝐴
4847a1i 11 . . . . . 6 (𝜑 → (2nd𝐻) Fn 𝐴)
495ffnd 6708 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5038simprd 495 . . . . . 6 ((𝜑𝑥𝐴) → ((2nd𝐻)‘𝑥) = (𝐺𝑥))
5148, 49, 50eqfnfvd 7025 . . . . 5 (𝜑 → (2nd𝐻) = 𝐺)
5251cnveqd 5865 . . . 4 (𝜑(2nd𝐻) = 𝐺)
5352imaeq1d 6048 . . 3 (𝜑 → ((2nd𝐻) “ 𝑍) = (𝐺𝑍))
5442, 53ineq12d 4205 . 2 (𝜑 → (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
5514, 54eqtrd 2764 1 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cin 3939  wss 3940  cop 4626  cmpt 5221   × cxp 5664  ccnv 5665  dom cdm 5666  ran crn 5667  cima 5669  ccom 5670  Fun wfun 6527   Fn wfn 6528  wf 6529  ontowfo 6531  cfv 6533  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fo 6539  df-fv 6541  df-1st 7968  df-2nd 7969
This theorem is referenced by:  mbfmco2  33753
  Copyright terms: Public domain W3C validator