Step | Hyp | Ref
| Expression |
1 | | xppreima2.3 |
. . . 4
⢠š» = (š„ ā š“ ⦠āØ(š¹āš„), (šŗāš„)ā©) |
2 | 1 | funmpt2 6586 |
. . 3
⢠Fun š» |
3 | | xppreima2.1 |
. . . . . . . 8
⢠(š ā š¹:š“ā¶šµ) |
4 | 3 | ffvelcdmda 7085 |
. . . . . . 7
⢠((š ā§ š„ ā š“) ā (š¹āš„) ā šµ) |
5 | | xppreima2.2 |
. . . . . . . 8
⢠(š ā šŗ:š“ā¶š¶) |
6 | 5 | ffvelcdmda 7085 |
. . . . . . 7
⢠((š ā§ š„ ā š“) ā (šŗāš„) ā š¶) |
7 | | opelxp 5711 |
. . . . . . 7
ā¢
(āØ(š¹āš„), (šŗāš„)ā© ā (šµ Ć š¶) ā ((š¹āš„) ā šµ ā§ (šŗāš„) ā š¶)) |
8 | 4, 6, 7 | sylanbrc 581 |
. . . . . 6
⢠((š ā§ š„ ā š“) ā āØ(š¹āš„), (šŗāš„)ā© ā (šµ Ć š¶)) |
9 | 8, 1 | fmptd 7114 |
. . . . 5
⢠(š ā š»:š“ā¶(šµ Ć š¶)) |
10 | 9 | frnd 6724 |
. . . 4
⢠(š ā ran š» ā (šµ Ć š¶)) |
11 | | xpss 5691 |
. . . 4
⢠(šµ Ć š¶) ā (V Ć V) |
12 | 10, 11 | sstrdi 3993 |
. . 3
⢠(š ā ran š» ā (V Ć V)) |
13 | | xppreima 32138 |
. . 3
⢠((Fun
š» ā§ ran š» ā (V Ć V)) ā
(ā”š» ā (š Ć š)) = ((ā”(1st ā š») ā š) ā© (ā”(2nd ā š») ā š))) |
14 | 2, 12, 13 | sylancr 585 |
. 2
⢠(š ā (ā”š» ā (š Ć š)) = ((ā”(1st ā š») ā š) ā© (ā”(2nd ā š») ā š))) |
15 | | fo1st 7997 |
. . . . . . . . 9
ā¢
1st :VāontoāV |
16 | | fofn 6806 |
. . . . . . . . 9
ā¢
(1st :VāontoāV ā 1st Fn V) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . 8
ā¢
1st Fn V |
18 | | opex 5463 |
. . . . . . . . 9
ā¢
āØ(š¹āš„), (šŗāš„)ā© ā V |
19 | 18, 1 | fnmpti 6692 |
. . . . . . . 8
⢠š» Fn š“ |
20 | | ssv 4005 |
. . . . . . . 8
⢠ran š» ā V |
21 | | fnco 6666 |
. . . . . . . 8
ā¢
((1st Fn V ā§ š» Fn š“ ā§ ran š» ā V) ā (1st ā
š») Fn š“) |
22 | 17, 19, 20, 21 | mp3an 1459 |
. . . . . . 7
ā¢
(1st ā š») Fn š“ |
23 | 22 | a1i 11 |
. . . . . 6
⢠(š ā (1st ā
š») Fn š“) |
24 | 3 | ffnd 6717 |
. . . . . 6
⢠(š ā š¹ Fn š“) |
25 | 2 | a1i 11 |
. . . . . . . . . 10
⢠((š ā§ š„ ā š“) ā Fun š») |
26 | 12 | adantr 479 |
. . . . . . . . . 10
⢠((š ā§ š„ ā š“) ā ran š» ā (V Ć V)) |
27 | | simpr 483 |
. . . . . . . . . . 11
⢠((š ā§ š„ ā š“) ā š„ ā š“) |
28 | 18, 1 | dmmpti 6693 |
. . . . . . . . . . 11
⢠dom š» = š“ |
29 | 27, 28 | eleqtrrdi 2842 |
. . . . . . . . . 10
⢠((š ā§ š„ ā š“) ā š„ ā dom š») |
30 | | opfv 32137 |
. . . . . . . . . 10
⢠(((Fun
š» ā§ ran š» ā (V Ć V)) ā§
š„ ā dom š») ā (š»āš„) = āØ((1st ā š»)āš„), ((2nd ā š»)āš„)ā©) |
31 | 25, 26, 29, 30 | syl21anc 834 |
. . . . . . . . 9
⢠((š ā§ š„ ā š“) ā (š»āš„) = āØ((1st ā š»)āš„), ((2nd ā š»)āš„)ā©) |
32 | 1 | fvmpt2 7008 |
. . . . . . . . . 10
⢠((š„ ā š“ ā§ āØ(š¹āš„), (šŗāš„)ā© ā (šµ Ć š¶)) ā (š»āš„) = āØ(š¹āš„), (šŗāš„)ā©) |
33 | 27, 8, 32 | syl2anc 582 |
. . . . . . . . 9
⢠((š ā§ š„ ā š“) ā (š»āš„) = āØ(š¹āš„), (šŗāš„)ā©) |
34 | 31, 33 | eqtr3d 2772 |
. . . . . . . 8
⢠((š ā§ š„ ā š“) ā āØ((1st ā
š»)āš„), ((2nd ā š»)āš„)ā© = āØ(š¹āš„), (šŗāš„)ā©) |
35 | | fvex 6903 |
. . . . . . . . 9
ā¢
((1st ā š»)āš„) ā V |
36 | | fvex 6903 |
. . . . . . . . 9
ā¢
((2nd ā š»)āš„) ā V |
37 | 35, 36 | opth 5475 |
. . . . . . . 8
ā¢
(āØ((1st ā š»)āš„), ((2nd ā š»)āš„)ā© = āØ(š¹āš„), (šŗāš„)ā© ā (((1st ā
š»)āš„) = (š¹āš„) ā§ ((2nd ā š»)āš„) = (šŗāš„))) |
38 | 34, 37 | sylib 217 |
. . . . . . 7
⢠((š ā§ š„ ā š“) ā (((1st ā š»)āš„) = (š¹āš„) ā§ ((2nd ā š»)āš„) = (šŗāš„))) |
39 | 38 | simpld 493 |
. . . . . 6
⢠((š ā§ š„ ā š“) ā ((1st ā š»)āš„) = (š¹āš„)) |
40 | 23, 24, 39 | eqfnfvd 7034 |
. . . . 5
⢠(š ā (1st ā
š») = š¹) |
41 | 40 | cnveqd 5874 |
. . . 4
⢠(š ā ā”(1st ā š») = ā”š¹) |
42 | 41 | imaeq1d 6057 |
. . 3
⢠(š ā (ā”(1st ā š») ā š) = (ā”š¹ ā š)) |
43 | | fo2nd 7998 |
. . . . . . . . 9
ā¢
2nd :VāontoāV |
44 | | fofn 6806 |
. . . . . . . . 9
ā¢
(2nd :VāontoāV ā 2nd Fn V) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
ā¢
2nd Fn V |
46 | | fnco 6666 |
. . . . . . . 8
ā¢
((2nd Fn V ā§ š» Fn š“ ā§ ran š» ā V) ā (2nd ā
š») Fn š“) |
47 | 45, 19, 20, 46 | mp3an 1459 |
. . . . . . 7
ā¢
(2nd ā š») Fn š“ |
48 | 47 | a1i 11 |
. . . . . 6
⢠(š ā (2nd ā
š») Fn š“) |
49 | 5 | ffnd 6717 |
. . . . . 6
⢠(š ā šŗ Fn š“) |
50 | 38 | simprd 494 |
. . . . . 6
⢠((š ā§ š„ ā š“) ā ((2nd ā š»)āš„) = (šŗāš„)) |
51 | 48, 49, 50 | eqfnfvd 7034 |
. . . . 5
⢠(š ā (2nd ā
š») = šŗ) |
52 | 51 | cnveqd 5874 |
. . . 4
⢠(š ā ā”(2nd ā š») = ā”šŗ) |
53 | 52 | imaeq1d 6057 |
. . 3
⢠(š ā (ā”(2nd ā š») ā š) = (ā”šŗ ā š)) |
54 | 42, 53 | ineq12d 4212 |
. 2
⢠(š ā ((ā”(1st ā š») ā š) ā© (ā”(2nd ā š») ā š)) = ((ā”š¹ ā š) ā© (ā”šŗ ā š))) |
55 | 14, 54 | eqtrd 2770 |
1
⢠(š ā (ā”š» ā (š Ć š)) = ((ā”š¹ ā š) ā© (ā”šŗ ā š))) |