Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 30413
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (𝜑𝐹:𝐴𝐵)
xppreima2.2 (𝜑𝐺:𝐴𝐶)
xppreima2.3 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
xppreima2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
21funmpt2 6363 . . 3 Fun 𝐻
3 xppreima2.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
43ffvelrnda 6828 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5 xppreima2.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
65ffvelrnda 6828 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
7 opelxp 5555 . . . . . . 7 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶))
84, 6, 7sylanbrc 586 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
98, 1fmptd 6855 . . . . 5 (𝜑𝐻:𝐴⟶(𝐵 × 𝐶))
109frnd 6494 . . . 4 (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶))
11 xpss 5535 . . . 4 (𝐵 × 𝐶) ⊆ (V × V)
1210, 11sstrdi 3927 . . 3 (𝜑 → ran 𝐻 ⊆ (V × V))
13 xppreima 30408 . . 3 ((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
142, 12, 13sylancr 590 . 2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
15 fo1st 7691 . . . . . . . . 9 1st :V–onto→V
16 fofn 6567 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1715, 16ax-mp 5 . . . . . . . 8 1st Fn V
18 opex 5321 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
1918, 1fnmpti 6463 . . . . . . . 8 𝐻 Fn 𝐴
20 ssv 3939 . . . . . . . 8 ran 𝐻 ⊆ V
21 fnco 6437 . . . . . . . 8 ((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st𝐻) Fn 𝐴)
2217, 19, 20, 21mp3an 1458 . . . . . . 7 (1st𝐻) Fn 𝐴
2322a1i 11 . . . . . 6 (𝜑 → (1st𝐻) Fn 𝐴)
243ffnd 6488 . . . . . 6 (𝜑𝐹 Fn 𝐴)
252a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
2612adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ (V × V))
27 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
2818, 1dmmpti 6464 . . . . . . . . . . 11 dom 𝐻 = 𝐴
2927, 28eleqtrrdi 2901 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐻)
30 opfv 30407 . . . . . . . . . 10 (((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐻) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
3125, 26, 29, 30syl21anc 836 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
321fvmpt2 6756 . . . . . . . . . 10 ((𝑥𝐴 ∧ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶)) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3327, 8, 32syl2anc 587 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3431, 33eqtr3d 2835 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
35 fvex 6658 . . . . . . . . 9 ((1st𝐻)‘𝑥) ∈ V
36 fvex 6658 . . . . . . . . 9 ((2nd𝐻)‘𝑥) ∈ V
3735, 36opth 5333 . . . . . . . 8 (⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩ ↔ (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3834, 37sylib 221 . . . . . . 7 ((𝜑𝑥𝐴) → (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3938simpld 498 . . . . . 6 ((𝜑𝑥𝐴) → ((1st𝐻)‘𝑥) = (𝐹𝑥))
4023, 24, 39eqfnfvd 6782 . . . . 5 (𝜑 → (1st𝐻) = 𝐹)
4140cnveqd 5710 . . . 4 (𝜑(1st𝐻) = 𝐹)
4241imaeq1d 5895 . . 3 (𝜑 → ((1st𝐻) “ 𝑌) = (𝐹𝑌))
43 fo2nd 7692 . . . . . . . . 9 2nd :V–onto→V
44 fofn 6567 . . . . . . . . 9 (2nd :V–onto→V → 2nd Fn V)
4543, 44ax-mp 5 . . . . . . . 8 2nd Fn V
46 fnco 6437 . . . . . . . 8 ((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd𝐻) Fn 𝐴)
4745, 19, 20, 46mp3an 1458 . . . . . . 7 (2nd𝐻) Fn 𝐴
4847a1i 11 . . . . . 6 (𝜑 → (2nd𝐻) Fn 𝐴)
495ffnd 6488 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5038simprd 499 . . . . . 6 ((𝜑𝑥𝐴) → ((2nd𝐻)‘𝑥) = (𝐺𝑥))
5148, 49, 50eqfnfvd 6782 . . . . 5 (𝜑 → (2nd𝐻) = 𝐺)
5251cnveqd 5710 . . . 4 (𝜑(2nd𝐻) = 𝐺)
5352imaeq1d 5895 . . 3 (𝜑 → ((2nd𝐻) “ 𝑍) = (𝐺𝑍))
5442, 53ineq12d 4140 . 2 (𝜑 → (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
5514, 54eqtrd 2833 1 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880  wss 3881  cop 4531  cmpt 5110   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-1st 7671  df-2nd 7672
This theorem is referenced by:  mbfmco2  31633
  Copyright terms: Public domain W3C validator