Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 31863
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (šœ‘ ā†’ š¹:š“āŸ¶šµ)
xppreima2.2 (šœ‘ ā†’ šŗ:š“āŸ¶š¶)
xppreima2.3 š» = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)
Assertion
Ref Expression
xppreima2 (šœ‘ ā†’ (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”š¹ ā€œ š‘Œ) āˆ© (ā—”šŗ ā€œ š‘)))
Distinct variable groups:   š‘„,š“   š‘„,šµ   š‘„,š¶   š‘„,š¹   š‘„,šŗ   š‘„,š»   šœ‘,š‘„
Allowed substitution hints:   š‘Œ(š‘„)   š‘(š‘„)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 š» = (š‘„ āˆˆ š“ ā†¦ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)
21funmpt2 6584 . . 3 Fun š»
3 xppreima2.1 . . . . . . . 8 (šœ‘ ā†’ š¹:š“āŸ¶šµ)
43ffvelcdmda 7083 . . . . . . 7 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (š¹ā€˜š‘„) āˆˆ šµ)
5 xppreima2.2 . . . . . . . 8 (šœ‘ ā†’ šŗ:š“āŸ¶š¶)
65ffvelcdmda 7083 . . . . . . 7 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (šŗā€˜š‘„) āˆˆ š¶)
7 opelxp 5711 . . . . . . 7 (āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶) ā†” ((š¹ā€˜š‘„) āˆˆ šµ āˆ§ (šŗā€˜š‘„) āˆˆ š¶))
84, 6, 7sylanbrc 583 . . . . . 6 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶))
98, 1fmptd 7110 . . . . 5 (šœ‘ ā†’ š»:š“āŸ¶(šµ Ɨ š¶))
109frnd 6722 . . . 4 (šœ‘ ā†’ ran š» āŠ† (šµ Ɨ š¶))
11 xpss 5691 . . . 4 (šµ Ɨ š¶) āŠ† (V Ɨ V)
1210, 11sstrdi 3993 . . 3 (šœ‘ ā†’ ran š» āŠ† (V Ɨ V))
13 xppreima 31858 . . 3 ((Fun š» āˆ§ ran š» āŠ† (V Ɨ V)) ā†’ (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”(1st āˆ˜ š») ā€œ š‘Œ) āˆ© (ā—”(2nd āˆ˜ š») ā€œ š‘)))
142, 12, 13sylancr 587 . 2 (šœ‘ ā†’ (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”(1st āˆ˜ š») ā€œ š‘Œ) āˆ© (ā—”(2nd āˆ˜ š») ā€œ š‘)))
15 fo1st 7991 . . . . . . . . 9 1st :Vā€“ontoā†’V
16 fofn 6804 . . . . . . . . 9 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
1715, 16ax-mp 5 . . . . . . . 8 1st Fn V
18 opex 5463 . . . . . . . . 9 āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ V
1918, 1fnmpti 6690 . . . . . . . 8 š» Fn š“
20 ssv 4005 . . . . . . . 8 ran š» āŠ† V
21 fnco 6664 . . . . . . . 8 ((1st Fn V āˆ§ š» Fn š“ āˆ§ ran š» āŠ† V) ā†’ (1st āˆ˜ š») Fn š“)
2217, 19, 20, 21mp3an 1461 . . . . . . 7 (1st āˆ˜ š») Fn š“
2322a1i 11 . . . . . 6 (šœ‘ ā†’ (1st āˆ˜ š») Fn š“)
243ffnd 6715 . . . . . 6 (šœ‘ ā†’ š¹ Fn š“)
252a1i 11 . . . . . . . . . 10 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ Fun š»)
2612adantr 481 . . . . . . . . . 10 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ ran š» āŠ† (V Ɨ V))
27 simpr 485 . . . . . . . . . . 11 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š‘„ āˆˆ š“)
2818, 1dmmpti 6691 . . . . . . . . . . 11 dom š» = š“
2927, 28eleqtrrdi 2844 . . . . . . . . . 10 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ š‘„ āˆˆ dom š»)
30 opfv 31857 . . . . . . . . . 10 (((Fun š» āˆ§ ran š» āŠ† (V Ɨ V)) āˆ§ š‘„ āˆˆ dom š») ā†’ (š»ā€˜š‘„) = āŸØ((1st āˆ˜ š»)ā€˜š‘„), ((2nd āˆ˜ š»)ā€˜š‘„)āŸ©)
3125, 26, 29, 30syl21anc 836 . . . . . . . . 9 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (š»ā€˜š‘„) = āŸØ((1st āˆ˜ š»)ā€˜š‘„), ((2nd āˆ˜ š»)ā€˜š‘„)āŸ©)
321fvmpt2 7006 . . . . . . . . . 10 ((š‘„ āˆˆ š“ āˆ§ āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© āˆˆ (šµ Ɨ š¶)) ā†’ (š»ā€˜š‘„) = āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)
3327, 8, 32syl2anc 584 . . . . . . . . 9 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (š»ā€˜š‘„) = āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)
3431, 33eqtr3d 2774 . . . . . . . 8 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ āŸØ((1st āˆ˜ š»)ā€˜š‘„), ((2nd āˆ˜ š»)ā€˜š‘„)āŸ© = āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ©)
35 fvex 6901 . . . . . . . . 9 ((1st āˆ˜ š»)ā€˜š‘„) āˆˆ V
36 fvex 6901 . . . . . . . . 9 ((2nd āˆ˜ š»)ā€˜š‘„) āˆˆ V
3735, 36opth 5475 . . . . . . . 8 (āŸØ((1st āˆ˜ š»)ā€˜š‘„), ((2nd āˆ˜ š»)ā€˜š‘„)āŸ© = āŸØ(š¹ā€˜š‘„), (šŗā€˜š‘„)āŸ© ā†” (((1st āˆ˜ š»)ā€˜š‘„) = (š¹ā€˜š‘„) āˆ§ ((2nd āˆ˜ š»)ā€˜š‘„) = (šŗā€˜š‘„)))
3834, 37sylib 217 . . . . . . 7 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ (((1st āˆ˜ š»)ā€˜š‘„) = (š¹ā€˜š‘„) āˆ§ ((2nd āˆ˜ š»)ā€˜š‘„) = (šŗā€˜š‘„)))
3938simpld 495 . . . . . 6 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ ((1st āˆ˜ š»)ā€˜š‘„) = (š¹ā€˜š‘„))
4023, 24, 39eqfnfvd 7032 . . . . 5 (šœ‘ ā†’ (1st āˆ˜ š») = š¹)
4140cnveqd 5873 . . . 4 (šœ‘ ā†’ ā—”(1st āˆ˜ š») = ā—”š¹)
4241imaeq1d 6056 . . 3 (šœ‘ ā†’ (ā—”(1st āˆ˜ š») ā€œ š‘Œ) = (ā—”š¹ ā€œ š‘Œ))
43 fo2nd 7992 . . . . . . . . 9 2nd :Vā€“ontoā†’V
44 fofn 6804 . . . . . . . . 9 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
4543, 44ax-mp 5 . . . . . . . 8 2nd Fn V
46 fnco 6664 . . . . . . . 8 ((2nd Fn V āˆ§ š» Fn š“ āˆ§ ran š» āŠ† V) ā†’ (2nd āˆ˜ š») Fn š“)
4745, 19, 20, 46mp3an 1461 . . . . . . 7 (2nd āˆ˜ š») Fn š“
4847a1i 11 . . . . . 6 (šœ‘ ā†’ (2nd āˆ˜ š») Fn š“)
495ffnd 6715 . . . . . 6 (šœ‘ ā†’ šŗ Fn š“)
5038simprd 496 . . . . . 6 ((šœ‘ āˆ§ š‘„ āˆˆ š“) ā†’ ((2nd āˆ˜ š»)ā€˜š‘„) = (šŗā€˜š‘„))
5148, 49, 50eqfnfvd 7032 . . . . 5 (šœ‘ ā†’ (2nd āˆ˜ š») = šŗ)
5251cnveqd 5873 . . . 4 (šœ‘ ā†’ ā—”(2nd āˆ˜ š») = ā—”šŗ)
5352imaeq1d 6056 . . 3 (šœ‘ ā†’ (ā—”(2nd āˆ˜ š») ā€œ š‘) = (ā—”šŗ ā€œ š‘))
5442, 53ineq12d 4212 . 2 (šœ‘ ā†’ ((ā—”(1st āˆ˜ š») ā€œ š‘Œ) āˆ© (ā—”(2nd āˆ˜ š») ā€œ š‘)) = ((ā—”š¹ ā€œ š‘Œ) āˆ© (ā—”šŗ ā€œ š‘)))
5514, 54eqtrd 2772 1 (šœ‘ ā†’ (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”š¹ ā€œ š‘Œ) āˆ© (ā—”šŗ ā€œ š‘)))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   āˆ§ wa 396   = wceq 1541   āˆˆ wcel 2106  Vcvv 3474   āˆ© cin 3946   āŠ† wss 3947  āŸØcop 4633   ā†¦ cmpt 5230   Ɨ cxp 5673  ā—”ccnv 5674  dom cdm 5675  ran crn 5676   ā€œ cima 5678   āˆ˜ ccom 5679  Fun wfun 6534   Fn wfn 6535  āŸ¶wf 6536  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972
This theorem is referenced by:  mbfmco2  33252
  Copyright terms: Public domain W3C validator