Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 32143
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (šœ‘ → š¹:š“āŸ¶šµ)
xppreima2.2 (šœ‘ → šŗ:š“āŸ¶š¶)
xppreima2.3 š» = (š‘„ ∈ š“ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)
Assertion
Ref Expression
xppreima2 (šœ‘ → (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”š¹ ā€œ š‘Œ) ∩ (ā—”šŗ ā€œ š‘)))
Distinct variable groups:   š‘„,š“   š‘„,šµ   š‘„,š¶   š‘„,š¹   š‘„,šŗ   š‘„,š»   šœ‘,š‘„
Allowed substitution hints:   š‘Œ(š‘„)   š‘(š‘„)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 š» = (š‘„ ∈ š“ ↦ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)
21funmpt2 6586 . . 3 Fun š»
3 xppreima2.1 . . . . . . . 8 (šœ‘ → š¹:š“āŸ¶šµ)
43ffvelcdmda 7085 . . . . . . 7 ((šœ‘ ∧ š‘„ ∈ š“) → (š¹ā€˜š‘„) ∈ šµ)
5 xppreima2.2 . . . . . . . 8 (šœ‘ → šŗ:š“āŸ¶š¶)
65ffvelcdmda 7085 . . . . . . 7 ((šœ‘ ∧ š‘„ ∈ š“) → (šŗā€˜š‘„) ∈ š¶)
7 opelxp 5711 . . . . . . 7 (⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ (šµ Ɨ š¶) ↔ ((š¹ā€˜š‘„) ∈ šµ ∧ (šŗā€˜š‘„) ∈ š¶))
84, 6, 7sylanbrc 581 . . . . . 6 ((šœ‘ ∧ š‘„ ∈ š“) → ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ (šµ Ɨ š¶))
98, 1fmptd 7114 . . . . 5 (šœ‘ → š»:š“āŸ¶(šµ Ɨ š¶))
109frnd 6724 . . . 4 (šœ‘ → ran š» āŠ† (šµ Ɨ š¶))
11 xpss 5691 . . . 4 (šµ Ɨ š¶) āŠ† (V Ɨ V)
1210, 11sstrdi 3993 . . 3 (šœ‘ → ran š» āŠ† (V Ɨ V))
13 xppreima 32138 . . 3 ((Fun š» ∧ ran š» āŠ† (V Ɨ V)) → (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”(1st ∘ š») ā€œ š‘Œ) ∩ (ā—”(2nd ∘ š») ā€œ š‘)))
142, 12, 13sylancr 585 . 2 (šœ‘ → (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”(1st ∘ š») ā€œ š‘Œ) ∩ (ā—”(2nd ∘ š») ā€œ š‘)))
15 fo1st 7997 . . . . . . . . 9 1st :V–onto→V
16 fofn 6806 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1715, 16ax-mp 5 . . . . . . . 8 1st Fn V
18 opex 5463 . . . . . . . . 9 ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ V
1918, 1fnmpti 6692 . . . . . . . 8 š» Fn š“
20 ssv 4005 . . . . . . . 8 ran š» āŠ† V
21 fnco 6666 . . . . . . . 8 ((1st Fn V ∧ š» Fn š“ ∧ ran š» āŠ† V) → (1st ∘ š») Fn š“)
2217, 19, 20, 21mp3an 1459 . . . . . . 7 (1st ∘ š») Fn š“
2322a1i 11 . . . . . 6 (šœ‘ → (1st ∘ š») Fn š“)
243ffnd 6717 . . . . . 6 (šœ‘ → š¹ Fn š“)
252a1i 11 . . . . . . . . . 10 ((šœ‘ ∧ š‘„ ∈ š“) → Fun š»)
2612adantr 479 . . . . . . . . . 10 ((šœ‘ ∧ š‘„ ∈ š“) → ran š» āŠ† (V Ɨ V))
27 simpr 483 . . . . . . . . . . 11 ((šœ‘ ∧ š‘„ ∈ š“) → š‘„ ∈ š“)
2818, 1dmmpti 6693 . . . . . . . . . . 11 dom š» = š“
2927, 28eleqtrrdi 2842 . . . . . . . . . 10 ((šœ‘ ∧ š‘„ ∈ š“) → š‘„ ∈ dom š»)
30 opfv 32137 . . . . . . . . . 10 (((Fun š» ∧ ran š» āŠ† (V Ɨ V)) ∧ š‘„ ∈ dom š») → (š»ā€˜š‘„) = ⟨((1st ∘ š»)ā€˜š‘„), ((2nd ∘ š»)ā€˜š‘„)⟩)
3125, 26, 29, 30syl21anc 834 . . . . . . . . 9 ((šœ‘ ∧ š‘„ ∈ š“) → (š»ā€˜š‘„) = ⟨((1st ∘ š»)ā€˜š‘„), ((2nd ∘ š»)ā€˜š‘„)⟩)
321fvmpt2 7008 . . . . . . . . . 10 ((š‘„ ∈ š“ ∧ ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ∈ (šµ Ɨ š¶)) → (š»ā€˜š‘„) = ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)
3327, 8, 32syl2anc 582 . . . . . . . . 9 ((šœ‘ ∧ š‘„ ∈ š“) → (š»ā€˜š‘„) = ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)
3431, 33eqtr3d 2772 . . . . . . . 8 ((šœ‘ ∧ š‘„ ∈ š“) → ⟨((1st ∘ š»)ā€˜š‘„), ((2nd ∘ š»)ā€˜š‘„)⟩ = ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩)
35 fvex 6903 . . . . . . . . 9 ((1st ∘ š»)ā€˜š‘„) ∈ V
36 fvex 6903 . . . . . . . . 9 ((2nd ∘ š»)ā€˜š‘„) ∈ V
3735, 36opth 5475 . . . . . . . 8 (⟨((1st ∘ š»)ā€˜š‘„), ((2nd ∘ š»)ā€˜š‘„)⟩ = ⟨(š¹ā€˜š‘„), (šŗā€˜š‘„)⟩ ↔ (((1st ∘ š»)ā€˜š‘„) = (š¹ā€˜š‘„) ∧ ((2nd ∘ š»)ā€˜š‘„) = (šŗā€˜š‘„)))
3834, 37sylib 217 . . . . . . 7 ((šœ‘ ∧ š‘„ ∈ š“) → (((1st ∘ š»)ā€˜š‘„) = (š¹ā€˜š‘„) ∧ ((2nd ∘ š»)ā€˜š‘„) = (šŗā€˜š‘„)))
3938simpld 493 . . . . . 6 ((šœ‘ ∧ š‘„ ∈ š“) → ((1st ∘ š»)ā€˜š‘„) = (š¹ā€˜š‘„))
4023, 24, 39eqfnfvd 7034 . . . . 5 (šœ‘ → (1st ∘ š») = š¹)
4140cnveqd 5874 . . . 4 (šœ‘ → ā—”(1st ∘ š») = ā—”š¹)
4241imaeq1d 6057 . . 3 (šœ‘ → (ā—”(1st ∘ š») ā€œ š‘Œ) = (ā—”š¹ ā€œ š‘Œ))
43 fo2nd 7998 . . . . . . . . 9 2nd :V–onto→V
44 fofn 6806 . . . . . . . . 9 (2nd :V–onto→V → 2nd Fn V)
4543, 44ax-mp 5 . . . . . . . 8 2nd Fn V
46 fnco 6666 . . . . . . . 8 ((2nd Fn V ∧ š» Fn š“ ∧ ran š» āŠ† V) → (2nd ∘ š») Fn š“)
4745, 19, 20, 46mp3an 1459 . . . . . . 7 (2nd ∘ š») Fn š“
4847a1i 11 . . . . . 6 (šœ‘ → (2nd ∘ š») Fn š“)
495ffnd 6717 . . . . . 6 (šœ‘ → šŗ Fn š“)
5038simprd 494 . . . . . 6 ((šœ‘ ∧ š‘„ ∈ š“) → ((2nd ∘ š»)ā€˜š‘„) = (šŗā€˜š‘„))
5148, 49, 50eqfnfvd 7034 . . . . 5 (šœ‘ → (2nd ∘ š») = šŗ)
5251cnveqd 5874 . . . 4 (šœ‘ → ā—”(2nd ∘ š») = ā—”šŗ)
5352imaeq1d 6057 . . 3 (šœ‘ → (ā—”(2nd ∘ š») ā€œ š‘) = (ā—”šŗ ā€œ š‘))
5442, 53ineq12d 4212 . 2 (šœ‘ → ((ā—”(1st ∘ š») ā€œ š‘Œ) ∩ (ā—”(2nd ∘ š») ā€œ š‘)) = ((ā—”š¹ ā€œ š‘Œ) ∩ (ā—”šŗ ā€œ š‘)))
5514, 54eqtrd 2770 1 (šœ‘ → (ā—”š» ā€œ (š‘Œ Ɨ š‘)) = ((ā—”š¹ ā€œ š‘Œ) ∩ (ā—”šŗ ā€œ š‘)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  Vcvv 3472   ∩ cin 3946   āŠ† wss 3947  āŸØcop 4633   ↦ cmpt 5230   Ɨ cxp 5673  ā—”ccnv 5674  dom cdm 5675  ran crn 5676   ā€œ cima 5678   ∘ ccom 5679  Fun wfun 6536   Fn wfn 6537  āŸ¶wf 6538  ā€“onto→wfo 6540  ā€˜cfv 6542  1st c1st 7975  2nd c2nd 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7977  df-2nd 7978
This theorem is referenced by:  mbfmco2  33562
  Copyright terms: Public domain W3C validator