Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 32548
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (𝜑𝐹:𝐴𝐵)
xppreima2.2 (𝜑𝐺:𝐴𝐶)
xppreima2.3 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
xppreima2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
21funmpt2 6539 . . 3 Fun 𝐻
3 xppreima2.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
43ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5 xppreima2.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
65ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
7 opelxp 5667 . . . . . . 7 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶))
84, 6, 7sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
98, 1fmptd 7068 . . . . 5 (𝜑𝐻:𝐴⟶(𝐵 × 𝐶))
109frnd 6678 . . . 4 (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶))
11 xpss 5647 . . . 4 (𝐵 × 𝐶) ⊆ (V × V)
1210, 11sstrdi 3956 . . 3 (𝜑 → ran 𝐻 ⊆ (V × V))
13 xppreima 32542 . . 3 ((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
142, 12, 13sylancr 587 . 2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
15 fo1st 7967 . . . . . . . . 9 1st :V–onto→V
16 fofn 6756 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1715, 16ax-mp 5 . . . . . . . 8 1st Fn V
18 opex 5419 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
1918, 1fnmpti 6643 . . . . . . . 8 𝐻 Fn 𝐴
20 ssv 3968 . . . . . . . 8 ran 𝐻 ⊆ V
21 fnco 6618 . . . . . . . 8 ((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st𝐻) Fn 𝐴)
2217, 19, 20, 21mp3an 1463 . . . . . . 7 (1st𝐻) Fn 𝐴
2322a1i 11 . . . . . 6 (𝜑 → (1st𝐻) Fn 𝐴)
243ffnd 6671 . . . . . 6 (𝜑𝐹 Fn 𝐴)
252a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
2612adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ (V × V))
27 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
2818, 1dmmpti 6644 . . . . . . . . . . 11 dom 𝐻 = 𝐴
2927, 28eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐻)
30 opfv 32541 . . . . . . . . . 10 (((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐻) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
3125, 26, 29, 30syl21anc 837 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
321fvmpt2 6961 . . . . . . . . . 10 ((𝑥𝐴 ∧ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶)) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3327, 8, 32syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3431, 33eqtr3d 2766 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
35 fvex 6853 . . . . . . . . 9 ((1st𝐻)‘𝑥) ∈ V
36 fvex 6853 . . . . . . . . 9 ((2nd𝐻)‘𝑥) ∈ V
3735, 36opth 5431 . . . . . . . 8 (⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩ ↔ (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3834, 37sylib 218 . . . . . . 7 ((𝜑𝑥𝐴) → (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3938simpld 494 . . . . . 6 ((𝜑𝑥𝐴) → ((1st𝐻)‘𝑥) = (𝐹𝑥))
4023, 24, 39eqfnfvd 6988 . . . . 5 (𝜑 → (1st𝐻) = 𝐹)
4140cnveqd 5829 . . . 4 (𝜑(1st𝐻) = 𝐹)
4241imaeq1d 6019 . . 3 (𝜑 → ((1st𝐻) “ 𝑌) = (𝐹𝑌))
43 fo2nd 7968 . . . . . . . . 9 2nd :V–onto→V
44 fofn 6756 . . . . . . . . 9 (2nd :V–onto→V → 2nd Fn V)
4543, 44ax-mp 5 . . . . . . . 8 2nd Fn V
46 fnco 6618 . . . . . . . 8 ((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd𝐻) Fn 𝐴)
4745, 19, 20, 46mp3an 1463 . . . . . . 7 (2nd𝐻) Fn 𝐴
4847a1i 11 . . . . . 6 (𝜑 → (2nd𝐻) Fn 𝐴)
495ffnd 6671 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5038simprd 495 . . . . . 6 ((𝜑𝑥𝐴) → ((2nd𝐻)‘𝑥) = (𝐺𝑥))
5148, 49, 50eqfnfvd 6988 . . . . 5 (𝜑 → (2nd𝐻) = 𝐺)
5251cnveqd 5829 . . . 4 (𝜑(2nd𝐻) = 𝐺)
5352imaeq1d 6019 . . 3 (𝜑 → ((2nd𝐻) “ 𝑍) = (𝐺𝑍))
5442, 53ineq12d 4180 . 2 (𝜑 → (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
5514, 54eqtrd 2764 1 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  cop 4591  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  1st c1st 7945  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  mbfmco2  34229
  Copyright terms: Public domain W3C validator