Proof of Theorem xppreima2
Step | Hyp | Ref
| Expression |
1 | | xppreima2.3 |
. . . 4
⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
2 | 1 | funmpt2 6378 |
. . 3
⊢ Fun 𝐻 |
3 | | xppreima2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
4 | 3 | ffvelrnda 6847 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
5 | | xppreima2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝐴⟶𝐶) |
6 | 5 | ffvelrnda 6847 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝐶) |
7 | | opelxp 5563 |
. . . . . . 7
⊢
(〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶) ↔ ((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐺‘𝑥) ∈ 𝐶)) |
8 | 4, 6, 7 | sylanbrc 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) |
9 | 8, 1 | fmptd 6874 |
. . . . 5
⊢ (𝜑 → 𝐻:𝐴⟶(𝐵 × 𝐶)) |
10 | 9 | frnd 6509 |
. . . 4
⊢ (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶)) |
11 | | xpss 5543 |
. . . 4
⊢ (𝐵 × 𝐶) ⊆ (V × V) |
12 | 10, 11 | sstrdi 3906 |
. . 3
⊢ (𝜑 → ran 𝐻 ⊆ (V × V)) |
13 | | xppreima 30510 |
. . 3
⊢ ((Fun
𝐻 ∧ ran 𝐻 ⊆ (V × V)) →
(◡𝐻 “ (𝑌 × 𝑍)) = ((◡(1st ∘ 𝐻) “ 𝑌) ∩ (◡(2nd ∘ 𝐻) “ 𝑍))) |
14 | 2, 12, 13 | sylancr 590 |
. 2
⊢ (𝜑 → (◡𝐻 “ (𝑌 × 𝑍)) = ((◡(1st ∘ 𝐻) “ 𝑌) ∩ (◡(2nd ∘ 𝐻) “ 𝑍))) |
15 | | fo1st 7718 |
. . . . . . . . 9
⊢
1st :V–onto→V |
16 | | fofn 6582 |
. . . . . . . . 9
⊢
(1st :V–onto→V → 1st Fn V) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . 8
⊢
1st Fn V |
18 | | opex 5327 |
. . . . . . . . 9
⊢
〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ V |
19 | 18, 1 | fnmpti 6478 |
. . . . . . . 8
⊢ 𝐻 Fn 𝐴 |
20 | | ssv 3918 |
. . . . . . . 8
⊢ ran 𝐻 ⊆ V |
21 | | fnco 6452 |
. . . . . . . 8
⊢
((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st ∘
𝐻) Fn 𝐴) |
22 | 17, 19, 20, 21 | mp3an 1458 |
. . . . . . 7
⊢
(1st ∘ 𝐻) Fn 𝐴 |
23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (1st ∘
𝐻) Fn 𝐴) |
24 | 3 | ffnd 6503 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐴) |
25 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Fun 𝐻) |
26 | 12 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran 𝐻 ⊆ (V × V)) |
27 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
28 | 18, 1 | dmmpti 6479 |
. . . . . . . . . . 11
⊢ dom 𝐻 = 𝐴 |
29 | 27, 28 | eleqtrrdi 2863 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐻) |
30 | | opfv 30509 |
. . . . . . . . . 10
⊢ (((Fun
𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧
𝑥 ∈ dom 𝐻) → (𝐻‘𝑥) = 〈((1st ∘ 𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉) |
31 | 25, 26, 29, 30 | syl21anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = 〈((1st ∘ 𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉) |
32 | 1 | fvmpt2 6774 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝐵 × 𝐶)) → (𝐻‘𝑥) = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
33 | 27, 8, 32 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
34 | 31, 33 | eqtr3d 2795 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 〈((1st ∘
𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉 = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
35 | | fvex 6675 |
. . . . . . . . 9
⊢
((1st ∘ 𝐻)‘𝑥) ∈ V |
36 | | fvex 6675 |
. . . . . . . . 9
⊢
((2nd ∘ 𝐻)‘𝑥) ∈ V |
37 | 35, 36 | opth 5339 |
. . . . . . . 8
⊢
(〈((1st ∘ 𝐻)‘𝑥), ((2nd ∘ 𝐻)‘𝑥)〉 = 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ↔ (((1st ∘
𝐻)‘𝑥) = (𝐹‘𝑥) ∧ ((2nd ∘ 𝐻)‘𝑥) = (𝐺‘𝑥))) |
38 | 34, 37 | sylib 221 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((1st ∘ 𝐻)‘𝑥) = (𝐹‘𝑥) ∧ ((2nd ∘ 𝐻)‘𝑥) = (𝐺‘𝑥))) |
39 | 38 | simpld 498 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ∘ 𝐻)‘𝑥) = (𝐹‘𝑥)) |
40 | 23, 24, 39 | eqfnfvd 6800 |
. . . . 5
⊢ (𝜑 → (1st ∘
𝐻) = 𝐹) |
41 | 40 | cnveqd 5720 |
. . . 4
⊢ (𝜑 → ◡(1st ∘ 𝐻) = ◡𝐹) |
42 | 41 | imaeq1d 5904 |
. . 3
⊢ (𝜑 → (◡(1st ∘ 𝐻) “ 𝑌) = (◡𝐹 “ 𝑌)) |
43 | | fo2nd 7719 |
. . . . . . . . 9
⊢
2nd :V–onto→V |
44 | | fofn 6582 |
. . . . . . . . 9
⊢
(2nd :V–onto→V → 2nd Fn V) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
⊢
2nd Fn V |
46 | | fnco 6452 |
. . . . . . . 8
⊢
((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd ∘
𝐻) Fn 𝐴) |
47 | 45, 19, 20, 46 | mp3an 1458 |
. . . . . . 7
⊢
(2nd ∘ 𝐻) Fn 𝐴 |
48 | 47 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (2nd ∘
𝐻) Fn 𝐴) |
49 | 5 | ffnd 6503 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn 𝐴) |
50 | 38 | simprd 499 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((2nd ∘ 𝐻)‘𝑥) = (𝐺‘𝑥)) |
51 | 48, 49, 50 | eqfnfvd 6800 |
. . . . 5
⊢ (𝜑 → (2nd ∘
𝐻) = 𝐺) |
52 | 51 | cnveqd 5720 |
. . . 4
⊢ (𝜑 → ◡(2nd ∘ 𝐻) = ◡𝐺) |
53 | 52 | imaeq1d 5904 |
. . 3
⊢ (𝜑 → (◡(2nd ∘ 𝐻) “ 𝑍) = (◡𝐺 “ 𝑍)) |
54 | 42, 53 | ineq12d 4120 |
. 2
⊢ (𝜑 → ((◡(1st ∘ 𝐻) “ 𝑌) ∩ (◡(2nd ∘ 𝐻) “ 𝑍)) = ((◡𝐹 “ 𝑌) ∩ (◡𝐺 “ 𝑍))) |
55 | 14, 54 | eqtrd 2793 |
1
⊢ (𝜑 → (◡𝐻 “ (𝑌 × 𝑍)) = ((◡𝐹 “ 𝑌) ∩ (◡𝐺 “ 𝑍))) |