MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap2 Structured version   Visualization version   GIF version

Theorem infmap2 10100
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 10459 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infmap2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . 3 (𝐵 = ∅ → (𝐴m 𝐵) = (𝐴m ∅))
2 breq2 5093 . . . . 5 (𝐵 = ∅ → (𝑥𝐵𝑥 ≈ ∅))
32anbi2d 630 . . . 4 (𝐵 = ∅ → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ≈ ∅)))
43abbidv 2796 . . 3 (𝐵 = ∅ → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
51, 4breq12d 5102 . 2 (𝐵 = ∅ → ((𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ↔ (𝐴m ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}))
6 simpl2 1193 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵𝐴)
7 reldom 8870 . . . . . . . . . . 11 Rel ≼
87brrelex1i 5670 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
96, 8syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ V)
107brrelex2i 5671 . . . . . . . . . 10 (𝐵𝐴𝐴 ∈ V)
116, 10syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V)
12 xpcomeng 8977 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
139, 11, 12syl2anc 584 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
14 simpl3 1194 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ∈ dom card)
15 simpr 484 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
16 mapdom3 9057 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))
1711, 9, 15, 16syl3anc 1373 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))
18 numdom 9921 . . . . . . . . . 10 (((𝐴m 𝐵) ∈ dom card ∧ 𝐴 ≼ (𝐴m 𝐵)) → 𝐴 ∈ dom card)
1914, 17, 18syl2anc 584 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ dom card)
20 simpl1 1192 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ω ≼ 𝐴)
21 infxpabs 10094 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
2219, 20, 15, 6, 21syl22anc 838 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≈ 𝐴)
23 entr 8923 . . . . . . . 8 (((𝐵 × 𝐴) ≈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ≈ 𝐴) → (𝐵 × 𝐴) ≈ 𝐴)
2413, 22, 23syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ 𝐴)
25 ssenen 9059 . . . . . . 7 ((𝐵 × 𝐴) ≈ 𝐴 → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
2624, 25syl 17 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
27 relen 8869 . . . . . . 7 Rel ≈
2827brrelex1i 5670 . . . . . 6 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
2926, 28syl 17 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
30 abid2 2866 . . . . . 6 {𝑥𝑥 ∈ (𝐴m 𝐵)} = (𝐴m 𝐵)
31 elmapi 8768 . . . . . . . 8 (𝑥 ∈ (𝐴m 𝐵) → 𝑥:𝐵𝐴)
32 fssxp 6674 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥 ⊆ (𝐵 × 𝐴))
33 ffun 6650 . . . . . . . . . . 11 (𝑥:𝐵𝐴 → Fun 𝑥)
34 vex 3438 . . . . . . . . . . . 12 𝑥 ∈ V
3534fundmen 8948 . . . . . . . . . . 11 (Fun 𝑥 → dom 𝑥𝑥)
36 ensym 8920 . . . . . . . . . . 11 (dom 𝑥𝑥𝑥 ≈ dom 𝑥)
3733, 35, 363syl 18 . . . . . . . . . 10 (𝑥:𝐵𝐴𝑥 ≈ dom 𝑥)
38 fdm 6656 . . . . . . . . . 10 (𝑥:𝐵𝐴 → dom 𝑥 = 𝐵)
3937, 38breqtrd 5115 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥𝐵)
4032, 39jca 511 . . . . . . . 8 (𝑥:𝐵𝐴 → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4131, 40syl 17 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐵) → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4241ss2abi 4016 . . . . . 6 {𝑥𝑥 ∈ (𝐴m 𝐵)} ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
4330, 42eqsstrri 3980 . . . . 5 (𝐴m 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
44 ssdomg 8917 . . . . 5 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V → ((𝐴m 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}))
4529, 43, 44mpisyl 21 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)})
46 domentr 8930 . . . 4 (((𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∧ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)}) → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
4745, 26, 46syl2anc 584 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
48 ovex 7374 . . . . . . 7 (𝐴m 𝐵) ∈ V
4948mptex 7152 . . . . . 6 (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∈ V
5049rnex 7835 . . . . 5 ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∈ V
51 ensym 8920 . . . . . . . . . . . 12 (𝑥𝐵𝐵𝑥)
5251ad2antll 729 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → 𝐵𝑥)
53 bren 8874 . . . . . . . . . . 11 (𝐵𝑥 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝑥)
5452, 53sylib 218 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 𝑓:𝐵1-1-onto𝑥)
55 f1of 6759 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵𝑥)
5655adantl 481 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝑥)
57 simplrl 776 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥𝐴)
5856, 57fssd 6664 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝐴)
5911, 9elmapd 8759 . . . . . . . . . . . . . . 15 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
6059ad2antrr 726 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
6158, 60mpbird 257 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓 ∈ (𝐴m 𝐵))
62 f1ofo 6766 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵onto𝑥)
63 forn 6734 . . . . . . . . . . . . . . . 16 (𝑓:𝐵onto𝑥 → ran 𝑓 = 𝑥)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝑥 → ran 𝑓 = 𝑥)
6564adantl 481 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → ran 𝑓 = 𝑥)
6665eqcomd 2736 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥 = ran 𝑓)
6761, 66jca 511 . . . . . . . . . . . 12 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓))
6867ex 412 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (𝑓:𝐵1-1-onto𝑥 → (𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓)))
6968eximdv 1918 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (∃𝑓 𝑓:𝐵1-1-onto𝑥 → ∃𝑓(𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓)))
7054, 69mpd 15 . . . . . . . . 9 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓(𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓))
71 df-rex 3055 . . . . . . . . 9 (∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓 ↔ ∃𝑓(𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓))
7270, 71sylibr 234 . . . . . . . 8 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓)
7372ex 412 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ((𝑥𝐴𝑥𝐵) → ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓))
7473ss2abdv 4015 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ {𝑥 ∣ ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓})
75 eqid 2730 . . . . . . 7 (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) = (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓)
7675rnmpt 5894 . . . . . 6 ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) = {𝑥 ∣ ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓}
7774, 76sseqtrrdi 3974 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
78 ssdomg 8917 . . . . 5 (ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∈ V → ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓)))
7950, 77, 78mpsyl 68 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
80 vex 3438 . . . . . . . . 9 𝑓 ∈ V
8180rnex 7835 . . . . . . . 8 ran 𝑓 ∈ V
8281rgenw 3049 . . . . . . 7 𝑓 ∈ (𝐴m 𝐵)ran 𝑓 ∈ V
8375fnmpt 6617 . . . . . . 7 (∀𝑓 ∈ (𝐴m 𝐵)ran 𝑓 ∈ V → (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) Fn (𝐴m 𝐵))
8482, 83mp1i 13 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) Fn (𝐴m 𝐵))
85 dffn4 6737 . . . . . 6 ((𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) Fn (𝐴m 𝐵) ↔ (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓):(𝐴m 𝐵)–onto→ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
8684, 85sylib 218 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓):(𝐴m 𝐵)–onto→ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
87 fodomnum 9940 . . . . 5 ((𝐴m 𝐵) ∈ dom card → ((𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓):(𝐴m 𝐵)–onto→ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) → ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ≼ (𝐴m 𝐵)))
8814, 86, 87sylc 65 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ≼ (𝐴m 𝐵))
89 domtr 8924 . . . 4 (({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∧ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ≼ (𝐴m 𝐵)) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴m 𝐵))
9079, 88, 89syl2anc 584 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴m 𝐵))
91 sbth 9005 . . 3 (((𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ∧ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴m 𝐵)) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
9247, 90, 91syl2anc 584 . 2 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
937brrelex2i 5671 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
94933ad2ant1 1133 . . . 4 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → 𝐴 ∈ V)
95 map0e 8801 . . . 4 (𝐴 ∈ V → (𝐴m ∅) = 1o)
9694, 95syl 17 . . 3 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m ∅) = 1o)
97 1oex 8390 . . . . 5 1o ∈ V
9897enref 8902 . . . 4 1o ≈ 1o
99 df-sn 4575 . . . . 5 {∅} = {𝑥𝑥 = ∅}
100 df1o2 8387 . . . . 5 1o = {∅}
101 en0 8935 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
102101anbi2i 623 . . . . . . 7 ((𝑥𝐴𝑥 ≈ ∅) ↔ (𝑥𝐴𝑥 = ∅))
103 0ss 4348 . . . . . . . . 9 ∅ ⊆ 𝐴
104 sseq1 3958 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
105103, 104mpbiri 258 . . . . . . . 8 (𝑥 = ∅ → 𝑥𝐴)
106105pm4.71ri 560 . . . . . . 7 (𝑥 = ∅ ↔ (𝑥𝐴𝑥 = ∅))
107102, 106bitr4i 278 . . . . . 6 ((𝑥𝐴𝑥 ≈ ∅) ↔ 𝑥 = ∅)
108107abbii 2797 . . . . 5 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = {𝑥𝑥 = ∅}
10999, 100, 1083eqtr4ri 2764 . . . 4 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = 1o
11098, 109breqtrri 5116 . . 3 1o ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}
11196, 110eqbrtrdi 5128 . 2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
1125, 92, 111pm2.61ne 3011 1 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3434  wss 3900  c0 4281  {csn 4574   class class class wbr 5089  cmpt 5170   × cxp 5612  dom cdm 5614  ran crn 5615  Fun wfun 6471   Fn wfn 6472  wf 6473  ontowfo 6475  1-1-ontowf1o 6476  (class class class)co 7341  ωcom 7791  1oc1o 8373  m cmap 8745  cen 8861  cdom 8862  cardccrd 9820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-card 9824  df-acn 9827
This theorem is referenced by:  infmap  10459
  Copyright terms: Public domain W3C validator