Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . 3
⊢ (𝐵 = ∅ → (𝐴 ↑m 𝐵) = (𝐴 ↑m
∅)) |
2 | | breq2 5074 |
. . . . 5
⊢ (𝐵 = ∅ → (𝑥 ≈ 𝐵 ↔ 𝑥 ≈ ∅)) |
3 | 2 | anbi2d 628 |
. . . 4
⊢ (𝐵 = ∅ → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅))) |
4 | 3 | abbidv 2808 |
. . 3
⊢ (𝐵 = ∅ → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅)}) |
5 | 1, 4 | breq12d 5083 |
. 2
⊢ (𝐵 = ∅ → ((𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ↔ (𝐴 ↑m ∅) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅)})) |
6 | | simpl2 1190 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ≼ 𝐴) |
7 | | reldom 8697 |
. . . . . . . . . . 11
⊢ Rel
≼ |
8 | 7 | brrelex1i 5634 |
. . . . . . . . . 10
⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
9 | 6, 8 | syl 17 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ V) |
10 | 7 | brrelex2i 5635 |
. . . . . . . . . 10
⊢ (𝐵 ≼ 𝐴 → 𝐴 ∈ V) |
11 | 6, 10 | syl 17 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V) |
12 | | xpcomeng 8804 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) |
13 | 9, 11, 12 | syl2anc 583 |
. . . . . . . 8
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵)) |
14 | | simpl3 1191 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 ↑m 𝐵) ∈ dom card) |
15 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅) |
16 | | mapdom3 8885 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
17 | 11, 9, 15, 16 | syl3anc 1369 |
. . . . . . . . . 10
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) |
18 | | numdom 9725 |
. . . . . . . . . 10
⊢ (((𝐴 ↑m 𝐵) ∈ dom card ∧ 𝐴 ≼ (𝐴 ↑m 𝐵)) → 𝐴 ∈ dom card) |
19 | 14, 17, 18 | syl2anc 583 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ dom card) |
20 | | simpl1 1189 |
. . . . . . . . 9
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ω ≼ 𝐴) |
21 | | infxpabs 9899 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom card ∧ ω
≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≈ 𝐴) |
22 | 19, 20, 15, 6, 21 | syl22anc 835 |
. . . . . . . 8
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≈ 𝐴) |
23 | | entr 8747 |
. . . . . . . 8
⊢ (((𝐵 × 𝐴) ≈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ≈ 𝐴) → (𝐵 × 𝐴) ≈ 𝐴) |
24 | 13, 22, 23 | syl2anc 583 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ 𝐴) |
25 | | ssenen 8887 |
. . . . . . 7
⊢ ((𝐵 × 𝐴) ≈ 𝐴 → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |
26 | 24, 25 | syl 17 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |
27 | | relen 8696 |
. . . . . . 7
⊢ Rel
≈ |
28 | 27 | brrelex1i 5634 |
. . . . . 6
⊢ ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ∈ V) |
29 | 26, 28 | syl 17 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ∈ V) |
30 | | abid2 2881 |
. . . . . 6
⊢ {𝑥 ∣ 𝑥 ∈ (𝐴 ↑m 𝐵)} = (𝐴 ↑m 𝐵) |
31 | | elmapi 8595 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ↑m 𝐵) → 𝑥:𝐵⟶𝐴) |
32 | | fssxp 6612 |
. . . . . . . . 9
⊢ (𝑥:𝐵⟶𝐴 → 𝑥 ⊆ (𝐵 × 𝐴)) |
33 | | ffun 6587 |
. . . . . . . . . . 11
⊢ (𝑥:𝐵⟶𝐴 → Fun 𝑥) |
34 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
35 | 34 | fundmen 8775 |
. . . . . . . . . . 11
⊢ (Fun
𝑥 → dom 𝑥 ≈ 𝑥) |
36 | | ensym 8744 |
. . . . . . . . . . 11
⊢ (dom
𝑥 ≈ 𝑥 → 𝑥 ≈ dom 𝑥) |
37 | 33, 35, 36 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑥:𝐵⟶𝐴 → 𝑥 ≈ dom 𝑥) |
38 | | fdm 6593 |
. . . . . . . . . 10
⊢ (𝑥:𝐵⟶𝐴 → dom 𝑥 = 𝐵) |
39 | 37, 38 | breqtrd 5096 |
. . . . . . . . 9
⊢ (𝑥:𝐵⟶𝐴 → 𝑥 ≈ 𝐵) |
40 | 32, 39 | jca 511 |
. . . . . . . 8
⊢ (𝑥:𝐵⟶𝐴 → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)) |
41 | 31, 40 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ↑m 𝐵) → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)) |
42 | 41 | ss2abi 3996 |
. . . . . 6
⊢ {𝑥 ∣ 𝑥 ∈ (𝐴 ↑m 𝐵)} ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} |
43 | 30, 42 | eqsstrri 3952 |
. . . . 5
⊢ (𝐴 ↑m 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} |
44 | | ssdomg 8741 |
. . . . 5
⊢ ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ∈ V → ((𝐴 ↑m 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} → (𝐴 ↑m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)})) |
45 | 29, 43, 44 | mpisyl 21 |
. . . 4
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 ↑m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)}) |
46 | | domentr 8754 |
. . . 4
⊢ (((𝐴 ↑m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ∧ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥 ≈ 𝐵)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) → (𝐴 ↑m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |
47 | 45, 26, 46 | syl2anc 583 |
. . 3
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 ↑m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |
48 | | ovex 7288 |
. . . . . . 7
⊢ (𝐴 ↑m 𝐵) ∈ V |
49 | 48 | mptex 7081 |
. . . . . 6
⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ∈ V |
50 | 49 | rnex 7733 |
. . . . 5
⊢ ran
(𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ∈ V |
51 | | ensym 8744 |
. . . . . . . . . . . 12
⊢ (𝑥 ≈ 𝐵 → 𝐵 ≈ 𝑥) |
52 | 51 | ad2antll 725 |
. . . . . . . . . . 11
⊢
((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) → 𝐵 ≈ 𝑥) |
53 | | bren 8701 |
. . . . . . . . . . 11
⊢ (𝐵 ≈ 𝑥 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝑥) |
54 | 52, 53 | sylib 217 |
. . . . . . . . . 10
⊢
((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) → ∃𝑓 𝑓:𝐵–1-1-onto→𝑥) |
55 | | f1of 6700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐵–1-1-onto→𝑥 → 𝑓:𝐵⟶𝑥) |
56 | 55 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → 𝑓:𝐵⟶𝑥) |
57 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → 𝑥 ⊆ 𝐴) |
58 | 56, 57 | fssd 6602 |
. . . . . . . . . . . . . 14
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → 𝑓:𝐵⟶𝐴) |
59 | 11, 9 | elmapd 8587 |
. . . . . . . . . . . . . . 15
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴 ↑m 𝐵) ↔ 𝑓:𝐵⟶𝐴)) |
60 | 59 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → (𝑓 ∈ (𝐴 ↑m 𝐵) ↔ 𝑓:𝐵⟶𝐴)) |
61 | 58, 60 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → 𝑓 ∈ (𝐴 ↑m 𝐵)) |
62 | | f1ofo 6707 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐵–1-1-onto→𝑥 → 𝑓:𝐵–onto→𝑥) |
63 | | forn 6675 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐵–onto→𝑥 → ran 𝑓 = 𝑥) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐵–1-1-onto→𝑥 → ran 𝑓 = 𝑥) |
65 | 64 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → ran 𝑓 = 𝑥) |
66 | 65 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → 𝑥 = ran 𝑓) |
67 | 61, 66 | jca 511 |
. . . . . . . . . . . 12
⊢
(((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) ∧ 𝑓:𝐵–1-1-onto→𝑥) → (𝑓 ∈ (𝐴 ↑m 𝐵) ∧ 𝑥 = ran 𝑓)) |
68 | 67 | ex 412 |
. . . . . . . . . . 11
⊢
((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) → (𝑓:𝐵–1-1-onto→𝑥 → (𝑓 ∈ (𝐴 ↑m 𝐵) ∧ 𝑥 = ran 𝑓))) |
69 | 68 | eximdv 1921 |
. . . . . . . . . 10
⊢
((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) → (∃𝑓 𝑓:𝐵–1-1-onto→𝑥 → ∃𝑓(𝑓 ∈ (𝐴 ↑m 𝐵) ∧ 𝑥 = ran 𝑓))) |
70 | 54, 69 | mpd 15 |
. . . . . . . . 9
⊢
((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) → ∃𝑓(𝑓 ∈ (𝐴 ↑m 𝐵) ∧ 𝑥 = ran 𝑓)) |
71 | | df-rex 3069 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
(𝐴 ↑m 𝐵)𝑥 = ran 𝑓 ↔ ∃𝑓(𝑓 ∈ (𝐴 ↑m 𝐵) ∧ 𝑥 = ran 𝑓)) |
72 | 70, 71 | sylibr 233 |
. . . . . . . 8
⊢
((((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)) → ∃𝑓 ∈ (𝐴 ↑m 𝐵)𝑥 = ran 𝑓) |
73 | 72 | ex 412 |
. . . . . . 7
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵) → ∃𝑓 ∈ (𝐴 ↑m 𝐵)𝑥 = ran 𝑓)) |
74 | 73 | ss2abdv 3993 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ⊆ {𝑥 ∣ ∃𝑓 ∈ (𝐴 ↑m 𝐵)𝑥 = ran 𝑓}) |
75 | | eqid 2738 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) = (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) |
76 | 75 | rnmpt 5853 |
. . . . . 6
⊢ ran
(𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) = {𝑥 ∣ ∃𝑓 ∈ (𝐴 ↑m 𝐵)𝑥 = ran 𝑓} |
77 | 74, 76 | sseqtrrdi 3968 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ⊆ ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓)) |
78 | | ssdomg 8741 |
. . . . 5
⊢ (ran
(𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ∈ V → ({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ⊆ ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ≼ ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓))) |
79 | 50, 77, 78 | mpsyl 68 |
. . . 4
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ≼ ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓)) |
80 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
81 | 80 | rnex 7733 |
. . . . . . . 8
⊢ ran 𝑓 ∈ V |
82 | 81 | rgenw 3075 |
. . . . . . 7
⊢
∀𝑓 ∈
(𝐴 ↑m 𝐵)ran 𝑓 ∈ V |
83 | 75 | fnmpt 6557 |
. . . . . . 7
⊢
(∀𝑓 ∈
(𝐴 ↑m 𝐵)ran 𝑓 ∈ V → (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) Fn (𝐴 ↑m 𝐵)) |
84 | 82, 83 | mp1i 13 |
. . . . . 6
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) Fn (𝐴 ↑m 𝐵)) |
85 | | dffn4 6678 |
. . . . . 6
⊢ ((𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) Fn (𝐴 ↑m 𝐵) ↔ (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓):(𝐴 ↑m 𝐵)–onto→ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓)) |
86 | 84, 85 | sylib 217 |
. . . . 5
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓):(𝐴 ↑m 𝐵)–onto→ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓)) |
87 | | fodomnum 9744 |
. . . . 5
⊢ ((𝐴 ↑m 𝐵) ∈ dom card → ((𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓):(𝐴 ↑m 𝐵)–onto→ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) → ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ≼ (𝐴 ↑m 𝐵))) |
88 | 14, 86, 87 | sylc 65 |
. . . 4
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ≼ (𝐴 ↑m 𝐵)) |
89 | | domtr 8748 |
. . . 4
⊢ (({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ≼ ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ∧ ran (𝑓 ∈ (𝐴 ↑m 𝐵) ↦ ran 𝑓) ≼ (𝐴 ↑m 𝐵)) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ≼ (𝐴 ↑m 𝐵)) |
90 | 79, 88, 89 | syl2anc 583 |
. . 3
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ≼ (𝐴 ↑m 𝐵)) |
91 | | sbth 8833 |
. . 3
⊢ (((𝐴 ↑m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ∧ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)} ≼ (𝐴 ↑m 𝐵)) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |
92 | 47, 90, 91 | syl2anc 583 |
. 2
⊢
(((ω ≼ 𝐴
∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |
93 | 7 | brrelex2i 5635 |
. . . . 5
⊢ (ω
≼ 𝐴 → 𝐴 ∈ V) |
94 | 93 | 3ad2ant1 1131 |
. . . 4
⊢ ((ω
≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) → 𝐴 ∈ V) |
95 | | map0e 8628 |
. . . 4
⊢ (𝐴 ∈ V → (𝐴 ↑m ∅) =
1o) |
96 | 94, 95 | syl 17 |
. . 3
⊢ ((ω
≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) → (𝐴 ↑m ∅) =
1o) |
97 | | 1oex 8280 |
. . . . 5
⊢
1o ∈ V |
98 | 97 | enref 8728 |
. . . 4
⊢
1o ≈ 1o |
99 | | df-sn 4559 |
. . . . 5
⊢ {∅}
= {𝑥 ∣ 𝑥 = ∅} |
100 | | df1o2 8279 |
. . . . 5
⊢
1o = {∅} |
101 | | en0 8758 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
102 | 101 | anbi2i 622 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅)) |
103 | | 0ss 4327 |
. . . . . . . . 9
⊢ ∅
⊆ 𝐴 |
104 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
105 | 103, 104 | mpbiri 257 |
. . . . . . . 8
⊢ (𝑥 = ∅ → 𝑥 ⊆ 𝐴) |
106 | 105 | pm4.71ri 560 |
. . . . . . 7
⊢ (𝑥 = ∅ ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅)) |
107 | 102, 106 | bitr4i 277 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅) ↔ 𝑥 = ∅) |
108 | 107 | abbii 2809 |
. . . . 5
⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅)} = {𝑥 ∣ 𝑥 = ∅} |
109 | 99, 100, 108 | 3eqtr4ri 2777 |
. . . 4
⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅)} =
1o |
110 | 98, 109 | breqtrri 5097 |
. . 3
⊢
1o ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅)} |
111 | 96, 110 | eqbrtrdi 5109 |
. 2
⊢ ((ω
≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) → (𝐴 ↑m ∅) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅)}) |
112 | 5, 92, 111 | pm2.61ne 3029 |
1
⊢ ((ω
≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) |