MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap2 Structured version   Visualization version   GIF version

Theorem infmap2 9434
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 9792 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infmap2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6982 . . 3 (𝐵 = ∅ → (𝐴𝑚 𝐵) = (𝐴𝑚 ∅))
2 breq2 4931 . . . . 5 (𝐵 = ∅ → (𝑥𝐵𝑥 ≈ ∅))
32anbi2d 619 . . . 4 (𝐵 = ∅ → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ≈ ∅)))
43abbidv 2840 . . 3 (𝐵 = ∅ → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
51, 4breq12d 4940 . 2 (𝐵 = ∅ → ((𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ↔ (𝐴𝑚 ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}))
6 simpl2 1172 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵𝐴)
7 reldom 8308 . . . . . . . . . . 11 Rel ≼
87brrelex1i 5455 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
96, 8syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ V)
107brrelex2i 5456 . . . . . . . . . 10 (𝐵𝐴𝐴 ∈ V)
116, 10syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V)
12 xpcomeng 8401 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
139, 11, 12syl2anc 576 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
14 simpl3 1173 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ∈ dom card)
15 simpr 477 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
16 mapdom3 8481 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴𝑚 𝐵))
1711, 9, 15, 16syl3anc 1351 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴𝑚 𝐵))
18 numdom 9254 . . . . . . . . . 10 (((𝐴𝑚 𝐵) ∈ dom card ∧ 𝐴 ≼ (𝐴𝑚 𝐵)) → 𝐴 ∈ dom card)
1914, 17, 18syl2anc 576 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ dom card)
20 simpl1 1171 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ω ≼ 𝐴)
21 infxpabs 9428 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
2219, 20, 15, 6, 21syl22anc 826 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≈ 𝐴)
23 entr 8354 . . . . . . . 8 (((𝐵 × 𝐴) ≈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ≈ 𝐴) → (𝐵 × 𝐴) ≈ 𝐴)
2413, 22, 23syl2anc 576 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ 𝐴)
25 ssenen 8483 . . . . . . 7 ((𝐵 × 𝐴) ≈ 𝐴 → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
2624, 25syl 17 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
27 relen 8307 . . . . . . 7 Rel ≈
2827brrelex1i 5455 . . . . . 6 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
2926, 28syl 17 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
30 abid2 2906 . . . . . 6 {𝑥𝑥 ∈ (𝐴𝑚 𝐵)} = (𝐴𝑚 𝐵)
31 elmapi 8224 . . . . . . . 8 (𝑥 ∈ (𝐴𝑚 𝐵) → 𝑥:𝐵𝐴)
32 fssxp 6361 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥 ⊆ (𝐵 × 𝐴))
33 ffun 6345 . . . . . . . . . . 11 (𝑥:𝐵𝐴 → Fun 𝑥)
34 vex 3415 . . . . . . . . . . . 12 𝑥 ∈ V
3534fundmen 8376 . . . . . . . . . . 11 (Fun 𝑥 → dom 𝑥𝑥)
36 ensym 8351 . . . . . . . . . . 11 (dom 𝑥𝑥𝑥 ≈ dom 𝑥)
3733, 35, 363syl 18 . . . . . . . . . 10 (𝑥:𝐵𝐴𝑥 ≈ dom 𝑥)
38 fdm 6350 . . . . . . . . . 10 (𝑥:𝐵𝐴 → dom 𝑥 = 𝐵)
3937, 38breqtrd 4953 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥𝐵)
4032, 39jca 504 . . . . . . . 8 (𝑥:𝐵𝐴 → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4131, 40syl 17 . . . . . . 7 (𝑥 ∈ (𝐴𝑚 𝐵) → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4241ss2abi 3932 . . . . . 6 {𝑥𝑥 ∈ (𝐴𝑚 𝐵)} ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
4330, 42eqsstr3i 3891 . . . . 5 (𝐴𝑚 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
44 ssdomg 8348 . . . . 5 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V → ((𝐴𝑚 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}))
4529, 43, 44mpisyl 21 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)})
46 domentr 8361 . . . 4 (((𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∧ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)}) → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
4745, 26, 46syl2anc 576 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
48 ovex 7006 . . . . . . 7 (𝐴𝑚 𝐵) ∈ V
4948mptex 6810 . . . . . 6 (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∈ V
5049rnex 7430 . . . . 5 ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∈ V
51 ensym 8351 . . . . . . . . . . . 12 (𝑥𝐵𝐵𝑥)
5251ad2antll 716 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → 𝐵𝑥)
53 bren 8311 . . . . . . . . . . 11 (𝐵𝑥 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝑥)
5452, 53sylib 210 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 𝑓:𝐵1-1-onto𝑥)
55 f1of 6442 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵𝑥)
5655adantl 474 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝑥)
57 simplrl 764 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥𝐴)
5856, 57fssd 6356 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝐴)
5911, 9elmapd 8216 . . . . . . . . . . . . . . 15 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴𝑚 𝐵) ↔ 𝑓:𝐵𝐴))
6059ad2antrr 713 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴𝑚 𝐵) ↔ 𝑓:𝐵𝐴))
6158, 60mpbird 249 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓 ∈ (𝐴𝑚 𝐵))
62 f1ofo 6449 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵onto𝑥)
63 forn 6420 . . . . . . . . . . . . . . . 16 (𝑓:𝐵onto𝑥 → ran 𝑓 = 𝑥)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝑥 → ran 𝑓 = 𝑥)
6564adantl 474 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → ran 𝑓 = 𝑥)
6665eqcomd 2781 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥 = ran 𝑓)
6761, 66jca 504 . . . . . . . . . . . 12 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓))
6867ex 405 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (𝑓:𝐵1-1-onto𝑥 → (𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓)))
6968eximdv 1876 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (∃𝑓 𝑓:𝐵1-1-onto𝑥 → ∃𝑓(𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓)))
7054, 69mpd 15 . . . . . . . . 9 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓(𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓))
71 df-rex 3091 . . . . . . . . 9 (∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓 ↔ ∃𝑓(𝑓 ∈ (𝐴𝑚 𝐵) ∧ 𝑥 = ran 𝑓))
7270, 71sylibr 226 . . . . . . . 8 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓)
7372ex 405 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ((𝑥𝐴𝑥𝐵) → ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓))
7473ss2abdv 3933 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ {𝑥 ∣ ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓})
75 eqid 2775 . . . . . . 7 (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) = (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓)
7675rnmpt 5667 . . . . . 6 ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) = {𝑥 ∣ ∃𝑓 ∈ (𝐴𝑚 𝐵)𝑥 = ran 𝑓}
7774, 76syl6sseqr 3907 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
78 ssdomg 8348 . . . . 5 (ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∈ V → ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓)))
7950, 77, 78mpsyl 68 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
80 vex 3415 . . . . . . . . 9 𝑓 ∈ V
8180rnex 7430 . . . . . . . 8 ran 𝑓 ∈ V
8281rgenw 3097 . . . . . . 7 𝑓 ∈ (𝐴𝑚 𝐵)ran 𝑓 ∈ V
8375fnmpt 6316 . . . . . . 7 (∀𝑓 ∈ (𝐴𝑚 𝐵)ran 𝑓 ∈ V → (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) Fn (𝐴𝑚 𝐵))
8482, 83mp1i 13 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) Fn (𝐴𝑚 𝐵))
85 dffn4 6423 . . . . . 6 ((𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) Fn (𝐴𝑚 𝐵) ↔ (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓):(𝐴𝑚 𝐵)–onto→ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
8684, 85sylib 210 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓):(𝐴𝑚 𝐵)–onto→ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓))
87 fodomnum 9273 . . . . 5 ((𝐴𝑚 𝐵) ∈ dom card → ((𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓):(𝐴𝑚 𝐵)–onto→ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) → ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ≼ (𝐴𝑚 𝐵)))
8814, 86, 87sylc 65 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ≼ (𝐴𝑚 𝐵))
89 domtr 8355 . . . 4 (({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ∧ ran (𝑓 ∈ (𝐴𝑚 𝐵) ↦ ran 𝑓) ≼ (𝐴𝑚 𝐵)) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴𝑚 𝐵))
9079, 88, 89syl2anc 576 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴𝑚 𝐵))
91 sbth 8429 . . 3 (((𝐴𝑚 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ∧ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴𝑚 𝐵)) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
9247, 90, 91syl2anc 576 . 2 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
937brrelex2i 5456 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
94933ad2ant1 1113 . . . 4 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → 𝐴 ∈ V)
95 map0e 8241 . . . 4 (𝐴 ∈ V → (𝐴𝑚 ∅) = 1o)
9694, 95syl 17 . . 3 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 ∅) = 1o)
97 1oex 7909 . . . . 5 1o ∈ V
9897enref 8335 . . . 4 1o ≈ 1o
99 df-sn 4440 . . . . 5 {∅} = {𝑥𝑥 = ∅}
100 df1o2 7914 . . . . 5 1o = {∅}
101 en0 8365 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
102101anbi2i 613 . . . . . . 7 ((𝑥𝐴𝑥 ≈ ∅) ↔ (𝑥𝐴𝑥 = ∅))
103 0ss 4234 . . . . . . . . 9 ∅ ⊆ 𝐴
104 sseq1 3881 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
105103, 104mpbiri 250 . . . . . . . 8 (𝑥 = ∅ → 𝑥𝐴)
106105pm4.71ri 553 . . . . . . 7 (𝑥 = ∅ ↔ (𝑥𝐴𝑥 = ∅))
107102, 106bitr4i 270 . . . . . 6 ((𝑥𝐴𝑥 ≈ ∅) ↔ 𝑥 = ∅)
108107abbii 2841 . . . . 5 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = {𝑥𝑥 = ∅}
10999, 100, 1083eqtr4ri 2810 . . . 4 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = 1o
11098, 109breqtrri 4954 . . 3 1o ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}
11196, 110syl6eqbr 4966 . 2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
1125, 92, 111pm2.61ne 3050 1 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴𝑚 𝐵) ∈ dom card) → (𝐴𝑚 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wex 1742  wcel 2048  {cab 2755  wne 2964  wral 3085  wrex 3086  Vcvv 3412  wss 3828  c0 4177  {csn 4439   class class class wbr 4927  cmpt 5006   × cxp 5402  dom cdm 5404  ran crn 5405  Fun wfun 6180   Fn wfn 6181  wf 6182  ontowfo 6184  1-1-ontowf1o 6185  (class class class)co 6974  ωcom 7394  1oc1o 7894  𝑚 cmap 8202  cen 8299  cdom 8300  cardccrd 9154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-rep 5047  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-inf2 8894
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-ral 3090  df-rex 3091  df-reu 3092  df-rmo 3093  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-pss 3844  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-tp 4444  df-op 4446  df-uni 4711  df-int 4748  df-iun 4792  df-br 4928  df-opab 4990  df-mpt 5007  df-tr 5029  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7498  df-2nd 7499  df-wrecs 7747  df-recs 7809  df-rdg 7847  df-1o 7901  df-oadd 7905  df-er 8085  df-map 8204  df-en 8303  df-dom 8304  df-sdom 8305  df-fin 8306  df-oi 8765  df-card 9158  df-acn 9161
This theorem is referenced by:  infmap  9792
  Copyright terms: Public domain W3C validator