MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infmap2 Structured version   Visualization version   GIF version

Theorem infmap2 10236
Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 10595 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
infmap2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infmap2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . 3 (𝐵 = ∅ → (𝐴m 𝐵) = (𝐴m ∅))
2 breq2 5128 . . . . 5 (𝐵 = ∅ → (𝑥𝐵𝑥 ≈ ∅))
32anbi2d 630 . . . 4 (𝐵 = ∅ → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥 ≈ ∅)))
43abbidv 2802 . . 3 (𝐵 = ∅ → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
51, 4breq12d 5137 . 2 (𝐵 = ∅ → ((𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ↔ (𝐴m ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}))
6 simpl2 1193 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵𝐴)
7 reldom 8970 . . . . . . . . . . 11 Rel ≼
87brrelex1i 5715 . . . . . . . . . 10 (𝐵𝐴𝐵 ∈ V)
96, 8syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ∈ V)
107brrelex2i 5716 . . . . . . . . . 10 (𝐵𝐴𝐴 ∈ V)
116, 10syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V)
12 xpcomeng 9083 . . . . . . . . 9 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
139, 11, 12syl2anc 584 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ (𝐴 × 𝐵))
14 simpl3 1194 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ∈ dom card)
15 simpr 484 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐵 ≠ ∅)
16 mapdom3 9168 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))
1711, 9, 15, 16syl3anc 1373 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴m 𝐵))
18 numdom 10057 . . . . . . . . . 10 (((𝐴m 𝐵) ∈ dom card ∧ 𝐴 ≼ (𝐴m 𝐵)) → 𝐴 ∈ dom card)
1914, 17, 18syl2anc 584 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → 𝐴 ∈ dom card)
20 simpl1 1192 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ω ≼ 𝐴)
21 infxpabs 10230 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
2219, 20, 15, 6, 21syl22anc 838 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴 × 𝐵) ≈ 𝐴)
23 entr 9025 . . . . . . . 8 (((𝐵 × 𝐴) ≈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ≈ 𝐴) → (𝐵 × 𝐴) ≈ 𝐴)
2413, 22, 23syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐵 × 𝐴) ≈ 𝐴)
25 ssenen 9170 . . . . . . 7 ((𝐵 × 𝐴) ≈ 𝐴 → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
2624, 25syl 17 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
27 relen 8969 . . . . . . 7 Rel ≈
2827brrelex1i 5715 . . . . . 6 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
2926, 28syl 17 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V)
30 abid2 2873 . . . . . 6 {𝑥𝑥 ∈ (𝐴m 𝐵)} = (𝐴m 𝐵)
31 elmapi 8868 . . . . . . . 8 (𝑥 ∈ (𝐴m 𝐵) → 𝑥:𝐵𝐴)
32 fssxp 6738 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥 ⊆ (𝐵 × 𝐴))
33 ffun 6714 . . . . . . . . . . 11 (𝑥:𝐵𝐴 → Fun 𝑥)
34 vex 3468 . . . . . . . . . . . 12 𝑥 ∈ V
3534fundmen 9050 . . . . . . . . . . 11 (Fun 𝑥 → dom 𝑥𝑥)
36 ensym 9022 . . . . . . . . . . 11 (dom 𝑥𝑥𝑥 ≈ dom 𝑥)
3733, 35, 363syl 18 . . . . . . . . . 10 (𝑥:𝐵𝐴𝑥 ≈ dom 𝑥)
38 fdm 6720 . . . . . . . . . 10 (𝑥:𝐵𝐴 → dom 𝑥 = 𝐵)
3937, 38breqtrd 5150 . . . . . . . . 9 (𝑥:𝐵𝐴𝑥𝐵)
4032, 39jca 511 . . . . . . . 8 (𝑥:𝐵𝐴 → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4131, 40syl 17 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐵) → (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵))
4241ss2abi 4047 . . . . . 6 {𝑥𝑥 ∈ (𝐴m 𝐵)} ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
4330, 42eqsstrri 4011 . . . . 5 (𝐴m 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}
44 ssdomg 9019 . . . . 5 ({𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∈ V → ((𝐴m 𝐵) ⊆ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)}))
4529, 43, 44mpisyl 21 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)})
46 domentr 9032 . . . 4 (((𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ∧ {𝑥 ∣ (𝑥 ⊆ (𝐵 × 𝐴) ∧ 𝑥𝐵)} ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)}) → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
4745, 26, 46syl2anc 584 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
48 ovex 7443 . . . . . . 7 (𝐴m 𝐵) ∈ V
4948mptex 7220 . . . . . 6 (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∈ V
5049rnex 7911 . . . . 5 ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∈ V
51 ensym 9022 . . . . . . . . . . . 12 (𝑥𝐵𝐵𝑥)
5251ad2antll 729 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → 𝐵𝑥)
53 bren 8974 . . . . . . . . . . 11 (𝐵𝑥 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝑥)
5452, 53sylib 218 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 𝑓:𝐵1-1-onto𝑥)
55 f1of 6823 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵𝑥)
5655adantl 481 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝑥)
57 simplrl 776 . . . . . . . . . . . . . . 15 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥𝐴)
5856, 57fssd 6728 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓:𝐵𝐴)
5911, 9elmapd 8859 . . . . . . . . . . . . . . 15 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
6059ad2antrr 726 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴m 𝐵) ↔ 𝑓:𝐵𝐴))
6158, 60mpbird 257 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑓 ∈ (𝐴m 𝐵))
62 f1ofo 6830 . . . . . . . . . . . . . . . 16 (𝑓:𝐵1-1-onto𝑥𝑓:𝐵onto𝑥)
63 forn 6798 . . . . . . . . . . . . . . . 16 (𝑓:𝐵onto𝑥 → ran 𝑓 = 𝑥)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝑥 → ran 𝑓 = 𝑥)
6564adantl 481 . . . . . . . . . . . . . 14 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → ran 𝑓 = 𝑥)
6665eqcomd 2742 . . . . . . . . . . . . 13 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → 𝑥 = ran 𝑓)
6761, 66jca 511 . . . . . . . . . . . 12 (((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) ∧ 𝑓:𝐵1-1-onto𝑥) → (𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓))
6867ex 412 . . . . . . . . . . 11 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (𝑓:𝐵1-1-onto𝑥 → (𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓)))
6968eximdv 1917 . . . . . . . . . 10 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → (∃𝑓 𝑓:𝐵1-1-onto𝑥 → ∃𝑓(𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓)))
7054, 69mpd 15 . . . . . . . . 9 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓(𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓))
71 df-rex 3062 . . . . . . . . 9 (∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓 ↔ ∃𝑓(𝑓 ∈ (𝐴m 𝐵) ∧ 𝑥 = ran 𝑓))
7270, 71sylibr 234 . . . . . . . 8 ((((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) ∧ (𝑥𝐴𝑥𝐵)) → ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓)
7372ex 412 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ((𝑥𝐴𝑥𝐵) → ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓))
7473ss2abdv 4046 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ {𝑥 ∣ ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓})
75 eqid 2736 . . . . . . 7 (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) = (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓)
7675rnmpt 5942 . . . . . 6 ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) = {𝑥 ∣ ∃𝑓 ∈ (𝐴m 𝐵)𝑥 = ran 𝑓}
7774, 76sseqtrrdi 4005 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
78 ssdomg 9019 . . . . 5 (ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∈ V → ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ⊆ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓)))
7950, 77, 78mpsyl 68 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
80 vex 3468 . . . . . . . . 9 𝑓 ∈ V
8180rnex 7911 . . . . . . . 8 ran 𝑓 ∈ V
8281rgenw 3056 . . . . . . 7 𝑓 ∈ (𝐴m 𝐵)ran 𝑓 ∈ V
8375fnmpt 6683 . . . . . . 7 (∀𝑓 ∈ (𝐴m 𝐵)ran 𝑓 ∈ V → (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) Fn (𝐴m 𝐵))
8482, 83mp1i 13 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) Fn (𝐴m 𝐵))
85 dffn4 6801 . . . . . 6 ((𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) Fn (𝐴m 𝐵) ↔ (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓):(𝐴m 𝐵)–onto→ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
8684, 85sylib 218 . . . . 5 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓):(𝐴m 𝐵)–onto→ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓))
87 fodomnum 10076 . . . . 5 ((𝐴m 𝐵) ∈ dom card → ((𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓):(𝐴m 𝐵)–onto→ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) → ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ≼ (𝐴m 𝐵)))
8814, 86, 87sylc 65 . . . 4 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ≼ (𝐴m 𝐵))
89 domtr 9026 . . . 4 (({𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ∧ ran (𝑓 ∈ (𝐴m 𝐵) ↦ ran 𝑓) ≼ (𝐴m 𝐵)) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴m 𝐵))
9079, 88, 89syl2anc 584 . . 3 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴m 𝐵))
91 sbth 9112 . . 3 (((𝐴m 𝐵) ≼ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ∧ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ≼ (𝐴m 𝐵)) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
9247, 90, 91syl2anc 584 . 2 (((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) ∧ 𝐵 ≠ ∅) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
937brrelex2i 5716 . . . . 5 (ω ≼ 𝐴𝐴 ∈ V)
94933ad2ant1 1133 . . . 4 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → 𝐴 ∈ V)
95 map0e 8901 . . . 4 (𝐴 ∈ V → (𝐴m ∅) = 1o)
9694, 95syl 17 . . 3 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m ∅) = 1o)
97 1oex 8495 . . . . 5 1o ∈ V
9897enref 9004 . . . 4 1o ≈ 1o
99 df-sn 4607 . . . . 5 {∅} = {𝑥𝑥 = ∅}
100 df1o2 8492 . . . . 5 1o = {∅}
101 en0 9037 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
102101anbi2i 623 . . . . . . 7 ((𝑥𝐴𝑥 ≈ ∅) ↔ (𝑥𝐴𝑥 = ∅))
103 0ss 4380 . . . . . . . . 9 ∅ ⊆ 𝐴
104 sseq1 3989 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
105103, 104mpbiri 258 . . . . . . . 8 (𝑥 = ∅ → 𝑥𝐴)
106105pm4.71ri 560 . . . . . . 7 (𝑥 = ∅ ↔ (𝑥𝐴𝑥 = ∅))
107102, 106bitr4i 278 . . . . . 6 ((𝑥𝐴𝑥 ≈ ∅) ↔ 𝑥 = ∅)
108107abbii 2803 . . . . 5 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = {𝑥𝑥 = ∅}
10999, 100, 1083eqtr4ri 2770 . . . 4 {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)} = 1o
11098, 109breqtrri 5151 . . 3 1o ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)}
11196, 110eqbrtrdi 5163 . 2 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m ∅) ≈ {𝑥 ∣ (𝑥𝐴𝑥 ≈ ∅)})
1125, 92, 111pm2.61ne 3018 1 ((ω ≼ 𝐴𝐵𝐴 ∧ (𝐴m 𝐵) ∈ dom card) → (𝐴m 𝐵) ≈ {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  Vcvv 3464  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  wf 6532  ontowfo 6534  1-1-ontowf1o 6535  (class class class)co 7410  ωcom 7866  1oc1o 8478  m cmap 8845  cen 8961  cdom 8962  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-card 9958  df-acn 9961
This theorem is referenced by:  infmap  10595
  Copyright terms: Public domain W3C validator