MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom2 Structured version   Visualization version   GIF version

Theorem modom2 9136
Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
modom2 (∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
Distinct variable group:   𝑥,𝐴

Proof of Theorem modom2
StepHypRef Expression
1 modom 9135 . 2 (∃*𝑥 𝑥𝐴 ↔ {𝑥𝑥𝐴} ≼ 1o)
2 abid2 2868 . . 3 {𝑥𝑥𝐴} = 𝐴
32breq1i 5098 . 2 ({𝑥𝑥𝐴} ≼ 1o𝐴 ≼ 1o)
41, 3bitri 275 1 (∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  ∃*wmo 2533  {cab 2709   class class class wbr 5091  1oc1o 8378  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  f1omoALT  48925  isthinc2  49451  thincciso2  49486  indthincALT  49494  eufunc  49553
  Copyright terms: Public domain W3C validator