MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom2 Structured version   Visualization version   GIF version

Theorem modom2 9151
Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
modom2 (∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
Distinct variable group:   𝑥,𝐴

Proof of Theorem modom2
StepHypRef Expression
1 modom 9150 . 2 (∃*𝑥 𝑥𝐴 ↔ {𝑥𝑥𝐴} ≼ 1o)
2 abid2 2865 . . 3 {𝑥𝑥𝐴} = 𝐴
32breq1i 5102 . 2 ({𝑥𝑥𝐴} ≼ 1o𝐴 ≼ 1o)
41, 3bitri 275 1 (∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  ∃*wmo 2531  {cab 2707   class class class wbr 5095  1oc1o 8388  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1o 8395  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by:  f1omoALT  48880  isthinc2  49406  thincciso2  49441  indthincALT  49449  eufunc  49508
  Copyright terms: Public domain W3C validator