![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modom2 | Structured version Visualization version GIF version |
Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
modom2 | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modom 9309 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ {𝑥 ∣ 𝑥 ∈ 𝐴} ≼ 1o) | |
2 | abid2 2882 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | breq1i 5173 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ≼ 1o ↔ 𝐴 ≼ 1o) |
4 | 1, 3 | bitri 275 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∃*wmo 2541 {cab 2717 class class class wbr 5166 1oc1o 8517 ≼ cdom 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-1o 8524 df-en 9006 df-dom 9007 df-sdom 9008 |
This theorem is referenced by: f1omoALT 48577 isthinc2 48695 indthincALT 48726 |
Copyright terms: Public domain | W3C validator |