MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom2 Structured version   Visualization version   GIF version

Theorem modom2 8521
Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
modom2 (∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
Distinct variable group:   𝑥,𝐴

Proof of Theorem modom2
StepHypRef Expression
1 modom 8520 . 2 (∃*𝑥 𝑥𝐴 ↔ {𝑥𝑥𝐴} ≼ 1o)
2 abid2 2911 . . 3 {𝑥𝑥𝐴} = 𝐴
32breq1i 4941 . 2 ({𝑥𝑥𝐴} ≼ 1o𝐴 ≼ 1o)
41, 3bitri 267 1 (∃*𝑥 𝑥𝐴𝐴 ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wcel 2051  ∃*wmo 2549  {cab 2760   class class class wbr 4934  1oc1o 7904  cdom 8310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3419  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-om 7403  df-1o 7911  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator