![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modom2 | Structured version Visualization version GIF version |
Description: Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
modom2 | ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modom 9287 | . 2 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ {𝑥 ∣ 𝑥 ∈ 𝐴} ≼ 1o) | |
2 | abid2 2879 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | breq1i 5158 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ≼ 1o ↔ 𝐴 ≼ 1o) |
4 | 1, 3 | bitri 275 | 1 ⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∃*wmo 2538 {cab 2714 class class class wbr 5151 1oc1o 8507 ≼ cdom 8991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-1o 8514 df-en 8994 df-dom 8995 df-sdom 8996 |
This theorem is referenced by: f1omoALT 48737 isthinc2 48947 indthincALT 48979 |
Copyright terms: Public domain | W3C validator |