MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euen1b Structured version   Visualization version   GIF version

Theorem euen1b 9067
Description: Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
euen1b (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem euen1b
StepHypRef Expression
1 euen1 9066 . 2 (∃!𝑥 𝑥𝐴 ↔ {𝑥𝑥𝐴} ≈ 1o)
2 abid2 2877 . . 3 {𝑥𝑥𝐴} = 𝐴
32breq1i 5155 . 2 ({𝑥𝑥𝐴} ≈ 1o𝐴 ≈ 1o)
41, 3bitr2i 276 1 (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  ∃!weu 2566  {cab 2712   class class class wbr 5148  1oc1o 8498  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1o 8505  df-en 8985
This theorem is referenced by:  euhash1  14456  f1otrspeq  19480  hausflf2  24022  minveclem4a  25478  prstchom2ALT  48880
  Copyright terms: Public domain W3C validator