| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euen1b | Structured version Visualization version GIF version | ||
| Description: Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| euen1b | ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euen1 9001 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ {𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o) | |
| 2 | abid2 2866 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 3 | 2 | breq1i 5117 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o ↔ 𝐴 ≈ 1o) |
| 4 | 1, 3 | bitr2i 276 | 1 ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∃!weu 2562 {cab 2708 class class class wbr 5110 1oc1o 8430 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1o 8437 df-en 8922 |
| This theorem is referenced by: euhash1 14392 f1otrspeq 19384 hausflf2 23892 minveclem4a 25337 termc2 49511 eufunclem 49514 euendfunc2 49520 dftermc3 49524 prstchom2ALT 49557 |
| Copyright terms: Public domain | W3C validator |