| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euen1b | Structured version Visualization version GIF version | ||
| Description: Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| euen1b | ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euen1 8949 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ {𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o) | |
| 2 | abid2 2868 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 3 | 2 | breq1i 5096 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o ↔ 𝐴 ≈ 1o) |
| 4 | 1, 3 | bitr2i 276 | 1 ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∃!weu 2563 {cab 2709 class class class wbr 5089 1oc1o 8378 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-en 8870 |
| This theorem is referenced by: euhash1 14327 f1otrspeq 19359 hausflf2 23913 minveclem4a 25357 termc2 49618 eufunclem 49621 euendfunc2 49627 dftermc3 49631 prstchom2ALT 49664 |
| Copyright terms: Public domain | W3C validator |