![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euen1b | Structured version Visualization version GIF version |
Description: Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
euen1b | ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euen1 9051 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ {𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o) | |
2 | abid2 2863 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
3 | 2 | breq1i 5156 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ≈ 1o ↔ 𝐴 ≈ 1o) |
4 | 1, 3 | bitr2i 275 | 1 ⊢ (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∃!weu 2556 {cab 2702 class class class wbr 5149 1oc1o 8480 ≈ cen 8961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-1o 8487 df-en 8965 |
This theorem is referenced by: euhash1 14415 f1otrspeq 19414 hausflf2 23946 minveclem4a 25402 prstchom2ALT 48268 |
Copyright terms: Public domain | W3C validator |