MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euen1b Structured version   Visualization version   GIF version

Theorem euen1b 8787
Description: Two ways to express "𝐴 has a unique element". (Contributed by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
euen1b (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem euen1b
StepHypRef Expression
1 euen1 8786 . 2 (∃!𝑥 𝑥𝐴 ↔ {𝑥𝑥𝐴} ≈ 1o)
2 abid2 2883 . . 3 {𝑥𝑥𝐴} = 𝐴
32breq1i 5085 . 2 ({𝑥𝑥𝐴} ≈ 1o𝐴 ≈ 1o)
41, 3bitr2i 275 1 (𝐴 ≈ 1o ↔ ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2109  ∃!weu 2569  {cab 2716   class class class wbr 5078  1oc1o 8274  cen 8704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-1o 8281  df-en 8708
This theorem is referenced by:  euhash1  14116  f1otrspeq  19036  hausflf2  23130  minveclem4a  24575  prstchom2ALT  46312
  Copyright terms: Public domain W3C validator