![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addresr | Structured version Visualization version GIF version |
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 11075 | . . 3 ⊢ 0R ∈ R | |
2 | addcnsr 11130 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩) | |
3 | 2 | an4s 659 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩) |
4 | 1, 1, 3 | mpanr12 704 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩) |
5 | 0idsr 11092 | . . . 4 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
6 | 1, 5 | ax-mp 5 | . . 3 ⊢ (0R +R 0R) = 0R |
7 | 6 | opeq2i 4878 | . 2 ⊢ ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩ = ⟨(𝐴 +R 𝐵), 0R⟩ |
8 | 4, 7 | eqtrdi 2789 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⟨cop 4635 (class class class)co 7409 Rcnr 10860 0Rc0r 10861 +R cplr 10864 + caddc 11113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-1p 10977 df-plp 10978 df-ltp 10980 df-enr 11050 df-nr 11051 df-plr 11052 df-0r 11055 df-c 11116 df-add 11121 |
This theorem is referenced by: axaddrcl 11147 axi2m1 11154 axrnegex 11157 axpre-ltadd 11162 |
Copyright terms: Public domain | W3C validator |