MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addresr Structured version   Visualization version   GIF version

Theorem addresr 10538
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)

Proof of Theorem addresr
StepHypRef Expression
1 0r 10480 . . 3 0RR
2 addcnsr 10535 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
32an4s 658 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
41, 1, 3mpanr12 703 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
5 0idsr 10497 . . . 4 (0RR → (0R +R 0R) = 0R)
61, 5ax-mp 5 . . 3 (0R +R 0R) = 0R
76opeq2i 4783 . 2 ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩ = ⟨(𝐴 +R 𝐵), 0R
84, 7syl6eq 2871 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cop 4549  (class class class)co 7133  Rcnr 10265  0Rc0r 10266   +R cplr 10269   + caddc 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-inf2 9082
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-omul 8085  df-er 8267  df-ec 8269  df-qs 8273  df-ni 10272  df-pli 10273  df-mi 10274  df-lti 10275  df-plpq 10308  df-mpq 10309  df-ltpq 10310  df-enq 10311  df-nq 10312  df-erq 10313  df-plq 10314  df-mq 10315  df-1nq 10316  df-rq 10317  df-ltnq 10318  df-np 10381  df-1p 10382  df-plp 10383  df-ltp 10385  df-enr 10455  df-nr 10456  df-plr 10457  df-0r 10460  df-c 10521  df-add 10526
This theorem is referenced by:  axaddrcl  10552  axi2m1  10559  axrnegex  10562  axpre-ltadd  10567
  Copyright terms: Public domain W3C validator