MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addresr Structured version   Visualization version   GIF version

Theorem addresr 11133
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)

Proof of Theorem addresr
StepHypRef Expression
1 0r 11075 . . 3 0RR
2 addcnsr 11130 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
32an4s 659 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
41, 1, 3mpanr12 704 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩)
5 0idsr 11092 . . . 4 (0RR → (0R +R 0R) = 0R)
61, 5ax-mp 5 . . 3 (0R +R 0R) = 0R
76opeq2i 4878 . 2 ⟨(𝐴 +R 𝐵), (0R +R 0R)⟩ = ⟨(𝐴 +R 𝐵), 0R
84, 7eqtrdi 2789 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ + ⟨𝐵, 0R⟩) = ⟨(𝐴 +R 𝐵), 0R⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cop 4635  (class class class)co 7409  Rcnr 10860  0Rc0r 10861   +R cplr 10864   + caddc 11113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-ni 10867  df-pli 10868  df-mi 10869  df-lti 10870  df-plpq 10903  df-mpq 10904  df-ltpq 10905  df-enq 10906  df-nq 10907  df-erq 10908  df-plq 10909  df-mq 10910  df-1nq 10911  df-rq 10912  df-ltnq 10913  df-np 10976  df-1p 10977  df-plp 10978  df-ltp 10980  df-enr 11050  df-nr 11051  df-plr 11052  df-0r 11055  df-c 11116  df-add 11121
This theorem is referenced by:  axaddrcl  11147  axi2m1  11154  axrnegex  11157  axpre-ltadd  11162
  Copyright terms: Public domain W3C validator