Step | Hyp | Ref
| Expression |
1 | | 2nn 12046 |
. . 3
⊢ 2 ∈
ℕ |
2 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | eqid 2738 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
4 | 2, 3 | isclwwlknx 28400 |
. . 3
⊢ (2 ∈
ℕ → (𝑊 ∈ (2
ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))) |
5 | 1, 4 | ax-mp 5 |
. 2
⊢ (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)) |
6 | | 3anass 1094 |
. . . 4
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
7 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑊) =
2 → ((♯‘𝑊)
− 1) = (2 − 1)) |
8 | | 2m1e1 12099 |
. . . . . . . . . . . . 13
⊢ (2
− 1) = 1 |
9 | 7, 8 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢
((♯‘𝑊) =
2 → ((♯‘𝑊)
− 1) = 1) |
10 | 9 | oveq2d 7291 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
2 → (0..^((♯‘𝑊) − 1)) = (0..^1)) |
11 | | fzo01 13469 |
. . . . . . . . . . 11
⊢ (0..^1) =
{0} |
12 | 10, 11 | eqtrdi 2794 |
. . . . . . . . . 10
⊢
((♯‘𝑊) =
2 → (0..^((♯‘𝑊) − 1)) = {0}) |
13 | 12 | adantr 481 |
. . . . . . . . 9
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
(0..^((♯‘𝑊)
− 1)) = {0}) |
14 | 13 | raleqdv 3348 |
. . . . . . . 8
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
(∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
15 | | c0ex 10969 |
. . . . . . . . 9
⊢ 0 ∈
V |
16 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (𝑊‘𝑖) = (𝑊‘0)) |
17 | | fv0p1e1 12096 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (𝑊‘(𝑖 + 1)) = (𝑊‘1)) |
18 | 16, 17 | preq12d 4677 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)}) |
19 | 18 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑖 = 0 → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
20 | 15, 19 | ralsn 4617 |
. . . . . . . 8
⊢
(∀𝑖 ∈
{0} {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
21 | 14, 20 | bitrdi 287 |
. . . . . . 7
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
(∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
22 | | prcom 4668 |
. . . . . . . . 9
⊢
{(lastS‘𝑊),
(𝑊‘0)} = {(𝑊‘0), (lastS‘𝑊)} |
23 | | lsw 14267 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
24 | 9 | fveq2d 6778 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1)) |
25 | 23, 24 | sylan9eqr 2800 |
. . . . . . . . . 10
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
(lastS‘𝑊) = (𝑊‘1)) |
26 | 25 | preq2d 4676 |
. . . . . . . . 9
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
{(𝑊‘0),
(lastS‘𝑊)} = {(𝑊‘0), (𝑊‘1)}) |
27 | 22, 26 | eqtrid 2790 |
. . . . . . . 8
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
{(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘1)}) |
28 | 27 | eleq1d 2823 |
. . . . . . 7
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
({(lastS‘𝑊), (𝑊‘0)} ∈
(Edg‘𝐺) ↔
{(𝑊‘0), (𝑊‘1)} ∈
(Edg‘𝐺))) |
29 | 21, 28 | anbi12d 631 |
. . . . . 6
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
((∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))) |
30 | | anidm 565 |
. . . . . 6
⊢ (({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) |
31 | 29, 30 | bitrdi 287 |
. . . . 5
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
((∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
32 | 31 | pm5.32da 579 |
. . . 4
⊢
((♯‘𝑊) =
2 → ((𝑊 ∈ Word
(Vtx‘𝐺) ∧
(∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))) |
33 | 6, 32 | syl5bb 283 |
. . 3
⊢
((♯‘𝑊) =
2 → ((𝑊 ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))) |
34 | 33 | pm5.32ri 576 |
. 2
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)) |
35 | | 3anass 1094 |
. . 3
⊢
(((♯‘𝑊)
= 2 ∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))) |
36 | | ancom 461 |
. . 3
⊢
(((♯‘𝑊)
= 2 ∧ (𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)) |
37 | 35, 36 | bitr2i 275 |
. 2
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔
((♯‘𝑊) = 2
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |
38 | 5, 34, 37 | 3bitri 297 |
1
⊢ (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) |