MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn2 Structured version   Visualization version   GIF version

Theorem clwwlkn2 28408
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Assertion
Ref Expression
clwwlkn2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlkn2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn 12046 . . 3 2 ∈ ℕ
2 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlknx 28400 . . 3 (2 ∈ ℕ → (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
6 3anass 1094 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 oveq1 7282 . . . . . . . . . . . . 13 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1))
8 2m1e1 12099 . . . . . . . . . . . . 13 (2 − 1) = 1
97, 8eqtrdi 2794 . . . . . . . . . . . 12 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1)
109oveq2d 7291 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = (0..^1))
11 fzo01 13469 . . . . . . . . . . 11 (0..^1) = {0}
1210, 11eqtrdi 2794 . . . . . . . . . 10 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = {0})
1312adantr 481 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (0..^((♯‘𝑊) − 1)) = {0})
1413raleqdv 3348 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
15 c0ex 10969 . . . . . . . . 9 0 ∈ V
16 fveq2 6774 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
17 fv0p1e1 12096 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
1816, 17preq12d 4677 . . . . . . . . . 10 (𝑖 = 0 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1918eleq1d 2823 . . . . . . . . 9 (𝑖 = 0 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2015, 19ralsn 4617 . . . . . . . 8 (∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2114, 20bitrdi 287 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
22 prcom 4668 . . . . . . . . 9 {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (lastS‘𝑊)}
23 lsw 14267 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
249fveq2d 6778 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1))
2523, 24sylan9eqr 2800 . . . . . . . . . 10 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (lastS‘𝑊) = (𝑊‘1))
2625preq2d 4676 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(𝑊‘0), (lastS‘𝑊)} = {(𝑊‘0), (𝑊‘1)})
2722, 26eqtrid 2790 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘1)})
2827eleq1d 2823 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2921, 28anbi12d 631 . . . . . 6 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
30 anidm 565 . . . . . 6 (({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
3129, 30bitrdi 287 . . . . 5 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
3231pm5.32da 579 . . . 4 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
336, 32syl5bb 283 . . 3 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
3433pm5.32ri 576 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
35 3anass 1094 . . 3 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
36 ancom 461 . . 3 (((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
3735, 36bitr2i 275 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
385, 34, 373bitri 297 1 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  cn 11973  2c2 12028  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265  Vtxcvtx 27366  Edgcedg 27417   ClWWalksN cclwwlkn 28388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-clwwlk 28346  df-clwwlkn 28389
This theorem is referenced by:  clwwlknon2x  28467  2clwwlk2clwwlk  28714
  Copyright terms: Public domain W3C validator