Step | Hyp | Ref
| Expression |
1 | | 2nn 12285 |
. . 3
β’ 2 β
β |
2 | | eqid 2733 |
. . . 4
β’
(VtxβπΊ) =
(VtxβπΊ) |
3 | | eqid 2733 |
. . . 4
β’
(EdgβπΊ) =
(EdgβπΊ) |
4 | 2, 3 | isclwwlknx 29289 |
. . 3
β’ (2 β
β β (π β (2
ClWWalksN πΊ) β ((π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ (β―βπ) = 2))) |
5 | 1, 4 | ax-mp 5 |
. 2
β’ (π β (2 ClWWalksN πΊ) β ((π β Word (VtxβπΊ) β§ βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ (β―βπ) = 2)) |
6 | | 3anass 1096 |
. . . 4
β’ ((π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β (π β Word (VtxβπΊ) β§ (βπ β (0..^((β―βπ) β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)))) |
7 | | oveq1 7416 |
. . . . . . . . . . . . 13
β’
((β―βπ) =
2 β ((β―βπ)
β 1) = (2 β 1)) |
8 | | 2m1e1 12338 |
. . . . . . . . . . . . 13
β’ (2
β 1) = 1 |
9 | 7, 8 | eqtrdi 2789 |
. . . . . . . . . . . 12
β’
((β―βπ) =
2 β ((β―βπ)
β 1) = 1) |
10 | 9 | oveq2d 7425 |
. . . . . . . . . . 11
β’
((β―βπ) =
2 β (0..^((β―βπ) β 1)) = (0..^1)) |
11 | | fzo01 13714 |
. . . . . . . . . . 11
β’ (0..^1) =
{0} |
12 | 10, 11 | eqtrdi 2789 |
. . . . . . . . . 10
β’
((β―βπ) =
2 β (0..^((β―βπ) β 1)) = {0}) |
13 | 12 | adantr 482 |
. . . . . . . . 9
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
(0..^((β―βπ)
β 1)) = {0}) |
14 | 13 | raleqdv 3326 |
. . . . . . . 8
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β βπ β {0} {(πβπ), (πβ(π + 1))} β (EdgβπΊ))) |
15 | | c0ex 11208 |
. . . . . . . . 9
β’ 0 β
V |
16 | | fveq2 6892 |
. . . . . . . . . . 11
β’ (π = 0 β (πβπ) = (πβ0)) |
17 | | fv0p1e1 12335 |
. . . . . . . . . . 11
β’ (π = 0 β (πβ(π + 1)) = (πβ1)) |
18 | 16, 17 | preq12d 4746 |
. . . . . . . . . 10
β’ (π = 0 β {(πβπ), (πβ(π + 1))} = {(πβ0), (πβ1)}) |
19 | 18 | eleq1d 2819 |
. . . . . . . . 9
β’ (π = 0 β ({(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ0), (πβ1)} β (EdgβπΊ))) |
20 | 15, 19 | ralsn 4686 |
. . . . . . . 8
β’
(βπ β
{0} {(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ0), (πβ1)} β (EdgβπΊ)) |
21 | 14, 20 | bitrdi 287 |
. . . . . . 7
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β {(πβ0), (πβ1)} β (EdgβπΊ))) |
22 | | prcom 4737 |
. . . . . . . . 9
β’
{(lastSβπ),
(πβ0)} = {(πβ0), (lastSβπ)} |
23 | | lsw 14514 |
. . . . . . . . . . 11
β’ (π β Word (VtxβπΊ) β (lastSβπ) = (πβ((β―βπ) β 1))) |
24 | 9 | fveq2d 6896 |
. . . . . . . . . . 11
β’
((β―βπ) =
2 β (πβ((β―βπ) β 1)) = (πβ1)) |
25 | 23, 24 | sylan9eqr 2795 |
. . . . . . . . . 10
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
(lastSβπ) = (πβ1)) |
26 | 25 | preq2d 4745 |
. . . . . . . . 9
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
{(πβ0),
(lastSβπ)} = {(πβ0), (πβ1)}) |
27 | 22, 26 | eqtrid 2785 |
. . . . . . . 8
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
{(lastSβπ), (πβ0)} = {(πβ0), (πβ1)}) |
28 | 27 | eleq1d 2819 |
. . . . . . 7
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
({(lastSβπ), (πβ0)} β
(EdgβπΊ) β
{(πβ0), (πβ1)} β
(EdgβπΊ))) |
29 | 21, 28 | anbi12d 632 |
. . . . . 6
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
((βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β ({(πβ0), (πβ1)} β (EdgβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)))) |
30 | | anidm 566 |
. . . . . 6
β’ (({(πβ0), (πβ1)} β (EdgβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)) β {(πβ0), (πβ1)} β (EdgβπΊ)) |
31 | 29, 30 | bitrdi 287 |
. . . . 5
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ)) β
((βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β {(πβ0), (πβ1)} β (EdgβπΊ))) |
32 | 31 | pm5.32da 580 |
. . . 4
β’
((β―βπ) =
2 β ((π β Word
(VtxβπΊ) β§
(βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ))) β (π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)))) |
33 | 6, 32 | bitrid 283 |
. . 3
β’
((β―βπ) =
2 β ((π β Word
(VtxβπΊ) β§
βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β (π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)))) |
34 | 33 | pm5.32ri 577 |
. 2
β’ (((π β Word (VtxβπΊ) β§ βπ β
(0..^((β―βπ)
β 1)){(πβπ), (πβ(π + 1))} β (EdgβπΊ) β§ {(lastSβπ), (πβ0)} β (EdgβπΊ)) β§ (β―βπ) = 2) β ((π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)) β§ (β―βπ) = 2)) |
35 | | 3anass 1096 |
. . 3
β’
(((β―βπ)
= 2 β§ π β Word
(VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)) β ((β―βπ) = 2 β§ (π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)))) |
36 | | ancom 462 |
. . 3
β’
(((β―βπ)
= 2 β§ (π β Word
(VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ))) β ((π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)) β§ (β―βπ) = 2)) |
37 | 35, 36 | bitr2i 276 |
. 2
β’ (((π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ)) β§ (β―βπ) = 2) β
((β―βπ) = 2
β§ π β Word
(VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ))) |
38 | 5, 34, 37 | 3bitri 297 |
1
β’ (π β (2 ClWWalksN πΊ) β ((β―βπ) = 2 β§ π β Word (VtxβπΊ) β§ {(πβ0), (πβ1)} β (EdgβπΊ))) |