MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn2 Structured version   Visualization version   GIF version

Theorem clwwlkn2 30026
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Assertion
Ref Expression
clwwlkn2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlkn2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn 12205 . . 3 2 ∈ ℕ
2 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2733 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlknx 30018 . . 3 (2 ∈ ℕ → (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
6 3anass 1094 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 oveq1 7359 . . . . . . . . . . . . 13 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1))
8 2m1e1 12253 . . . . . . . . . . . . 13 (2 − 1) = 1
97, 8eqtrdi 2784 . . . . . . . . . . . 12 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1)
109oveq2d 7368 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = (0..^1))
11 fzo01 13649 . . . . . . . . . . 11 (0..^1) = {0}
1210, 11eqtrdi 2784 . . . . . . . . . 10 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = {0})
1312adantr 480 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (0..^((♯‘𝑊) − 1)) = {0})
1413raleqdv 3293 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
15 c0ex 11113 . . . . . . . . 9 0 ∈ V
16 fveq2 6828 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
17 fv0p1e1 12250 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
1816, 17preq12d 4693 . . . . . . . . . 10 (𝑖 = 0 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1918eleq1d 2818 . . . . . . . . 9 (𝑖 = 0 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2015, 19ralsn 4633 . . . . . . . 8 (∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2114, 20bitrdi 287 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
22 prcom 4684 . . . . . . . . 9 {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (lastS‘𝑊)}
23 lsw 14473 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
249fveq2d 6832 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1))
2523, 24sylan9eqr 2790 . . . . . . . . . 10 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (lastS‘𝑊) = (𝑊‘1))
2625preq2d 4692 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(𝑊‘0), (lastS‘𝑊)} = {(𝑊‘0), (𝑊‘1)})
2722, 26eqtrid 2780 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘1)})
2827eleq1d 2818 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2921, 28anbi12d 632 . . . . . 6 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
30 anidm 564 . . . . . 6 (({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
3129, 30bitrdi 287 . . . . 5 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
3231pm5.32da 579 . . . 4 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
336, 32bitrid 283 . . 3 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
3433pm5.32ri 575 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
35 3anass 1094 . . 3 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
36 ancom 460 . . 3 (((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
3735, 36bitr2i 276 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
385, 34, 373bitri 297 1 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {csn 4575  {cpr 4577  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  cmin 11351  cn 12132  2c2 12187  ..^cfzo 13556  chash 14239  Word cword 14422  lastSclsw 14471  Vtxcvtx 28976  Edgcedg 29027   ClWWalksN cclwwlkn 30006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-lsw 14472  df-clwwlk 29964  df-clwwlkn 30007
This theorem is referenced by:  clwwlknon2x  30085  2clwwlk2clwwlk  30332
  Copyright terms: Public domain W3C validator