MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn2 Structured version   Visualization version   GIF version

Theorem clwwlkn2 28309
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Assertion
Ref Expression
clwwlkn2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlkn2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn 11976 . . 3 2 ∈ ℕ
2 eqid 2738 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2738 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlknx 28301 . . 3 (2 ∈ ℕ → (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
6 3anass 1093 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 oveq1 7262 . . . . . . . . . . . . 13 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1))
8 2m1e1 12029 . . . . . . . . . . . . 13 (2 − 1) = 1
97, 8eqtrdi 2795 . . . . . . . . . . . 12 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1)
109oveq2d 7271 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = (0..^1))
11 fzo01 13397 . . . . . . . . . . 11 (0..^1) = {0}
1210, 11eqtrdi 2795 . . . . . . . . . 10 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = {0})
1312adantr 480 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (0..^((♯‘𝑊) − 1)) = {0})
1413raleqdv 3339 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
15 c0ex 10900 . . . . . . . . 9 0 ∈ V
16 fveq2 6756 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
17 fv0p1e1 12026 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
1816, 17preq12d 4674 . . . . . . . . . 10 (𝑖 = 0 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1918eleq1d 2823 . . . . . . . . 9 (𝑖 = 0 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2015, 19ralsn 4614 . . . . . . . 8 (∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2114, 20bitrdi 286 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
22 prcom 4665 . . . . . . . . 9 {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (lastS‘𝑊)}
23 lsw 14195 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
249fveq2d 6760 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1))
2523, 24sylan9eqr 2801 . . . . . . . . . 10 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (lastS‘𝑊) = (𝑊‘1))
2625preq2d 4673 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(𝑊‘0), (lastS‘𝑊)} = {(𝑊‘0), (𝑊‘1)})
2722, 26syl5eq 2791 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘1)})
2827eleq1d 2823 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2921, 28anbi12d 630 . . . . . 6 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
30 anidm 564 . . . . . 6 (({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
3129, 30bitrdi 286 . . . . 5 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
3231pm5.32da 578 . . . 4 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
336, 32syl5bb 282 . . 3 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
3433pm5.32ri 575 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
35 3anass 1093 . . 3 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
36 ancom 460 . . 3 (((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
3735, 36bitr2i 275 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
385, 34, 373bitri 296 1 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  cn 11903  2c2 11958  ..^cfzo 13311  chash 13972  Word cword 14145  lastSclsw 14193  Vtxcvtx 27269  Edgcedg 27320   ClWWalksN cclwwlkn 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lsw 14194  df-clwwlk 28247  df-clwwlkn 28290
This theorem is referenced by:  clwwlknon2x  28368  2clwwlk2clwwlk  28615
  Copyright terms: Public domain W3C validator