MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn2 Structured version   Visualization version   GIF version

Theorem clwwlkn2 30019
Description: A closed walk of length 2 represented as word is a word consisting of 2 symbols representing (not necessarily different) vertices connected by (at least) one edge. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 25-Apr-2021.)
Assertion
Ref Expression
clwwlkn2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlkn2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn 12195 . . 3 2 ∈ ℕ
2 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2731 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlknx 30011 . . 3 (2 ∈ ℕ → (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
6 3anass 1094 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 oveq1 7353 . . . . . . . . . . . . 13 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = (2 − 1))
8 2m1e1 12243 . . . . . . . . . . . . 13 (2 − 1) = 1
97, 8eqtrdi 2782 . . . . . . . . . . . 12 ((♯‘𝑊) = 2 → ((♯‘𝑊) − 1) = 1)
109oveq2d 7362 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = (0..^1))
11 fzo01 13644 . . . . . . . . . . 11 (0..^1) = {0}
1210, 11eqtrdi 2782 . . . . . . . . . 10 ((♯‘𝑊) = 2 → (0..^((♯‘𝑊) − 1)) = {0})
1312adantr 480 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (0..^((♯‘𝑊) − 1)) = {0})
1413raleqdv 3292 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
15 c0ex 11103 . . . . . . . . 9 0 ∈ V
16 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
17 fv0p1e1 12240 . . . . . . . . . . 11 (𝑖 = 0 → (𝑊‘(𝑖 + 1)) = (𝑊‘1))
1816, 17preq12d 4694 . . . . . . . . . 10 (𝑖 = 0 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘0), (𝑊‘1)})
1918eleq1d 2816 . . . . . . . . 9 (𝑖 = 0 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2015, 19ralsn 4634 . . . . . . . 8 (∀𝑖 ∈ {0} {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
2114, 20bitrdi 287 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
22 prcom 4685 . . . . . . . . 9 {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (lastS‘𝑊)}
23 lsw 14468 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
249fveq2d 6826 . . . . . . . . . . 11 ((♯‘𝑊) = 2 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘1))
2523, 24sylan9eqr 2788 . . . . . . . . . 10 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (lastS‘𝑊) = (𝑊‘1))
2625preq2d 4693 . . . . . . . . 9 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(𝑊‘0), (lastS‘𝑊)} = {(𝑊‘0), (𝑊‘1)})
2722, 26eqtrid 2778 . . . . . . . 8 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘1)})
2827eleq1d 2816 . . . . . . 7 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
2921, 28anbi12d 632 . . . . . 6 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
30 anidm 564 . . . . . 6 (({(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))
3129, 30bitrdi 287 . . . . 5 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
3231pm5.32da 579 . . . 4 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
336, 32bitrid 283 . . 3 ((♯‘𝑊) = 2 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
3433pm5.32ri 575 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
35 3anass 1094 . . 3 (((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))))
36 ancom 460 . . 3 (((♯‘𝑊) = 2 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2))
3735, 36bitr2i 276 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 2) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
385, 34, 373bitri 297 1 (𝑊 ∈ (2 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 2 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0), (𝑊‘1)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {csn 4576  {cpr 4578  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  cmin 11341  cn 12122  2c2 12177  ..^cfzo 13551  chash 14234  Word cword 14417  lastSclsw 14466  Vtxcvtx 28972  Edgcedg 29023   ClWWalksN cclwwlkn 29999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-lsw 14467  df-clwwlk 29957  df-clwwlkn 30000
This theorem is referenced by:  clwwlknon2x  30078  2clwwlk2clwwlk  30325
  Copyright terms: Public domain W3C validator