Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemieq | Structured version Visualization version GIF version |
Description: If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
Ref | Expression |
---|---|
ballotlemieq | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝐶) = (𝐼‘𝐷)) | |
2 | 1 | breq2d 5090 | . . . . 5 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝐶) ↔ 𝑖 ≤ (𝐼‘𝐷))) |
3 | 1 | oveq1d 7283 | . . . . . 6 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝐶) + 1) = ((𝐼‘𝐷) + 1)) |
4 | 3 | oveq1d 7283 | . . . . 5 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐷) + 1) − 𝑖)) |
5 | 2, 4 | ifbieq1d 4488 | . . . 4 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖)) |
6 | 5 | mpteq2dva 5178 | . . 3 ⊢ ((𝐼‘𝐶) = (𝐼‘𝐷) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
7 | 6 | 3ad2ant3 1133 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
8 | ballotth.m | . . . 4 ⊢ 𝑀 ∈ ℕ | |
9 | ballotth.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
10 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
11 | ballotth.p | . . . 4 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
12 | ballotth.f | . . . 4 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
13 | ballotth.e | . . . 4 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
14 | ballotth.mgtn | . . . 4 ⊢ 𝑁 < 𝑀 | |
15 | ballotth.i | . . . 4 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
16 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | ballotlemsval 32454 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
18 | 17 | 3ad2ant1 1131 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
19 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | ballotlemsval 32454 | . . 3 ⊢ (𝐷 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐷) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
20 | 19 | 3ad2ant2 1132 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐷) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
21 | 7, 18, 20 | 3eqtr4d 2789 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 ∖ cdif 3888 ∩ cin 3890 ifcif 4464 𝒫 cpw 4538 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 infcinf 9161 ℝcr 10854 0cc0 10855 1c1 10856 + caddc 10858 < clt 10993 ≤ cle 10994 − cmin 11188 / cdiv 11615 ℕcn 11956 ℤcz 12302 ...cfz 13221 ♯chash 14025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 |
This theorem is referenced by: ballotlemrinv0 32478 |
Copyright terms: Public domain | W3C validator |