|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemieq | Structured version Visualization version GIF version | ||
| Description: If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017.) | 
| Ref | Expression | 
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ | 
| ballotth.n | ⊢ 𝑁 ∈ ℕ | 
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | 
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | 
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | 
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | 
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 | 
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | 
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | 
| Ref | Expression | 
|---|---|
| ballotlemieq | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝐶) = (𝐼‘𝐷)) | |
| 2 | 1 | breq2d 5154 | . . . . 5 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝐶) ↔ 𝑖 ≤ (𝐼‘𝐷))) | 
| 3 | 1 | oveq1d 7447 | . . . . . 6 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝐶) + 1) = ((𝐼‘𝐷) + 1)) | 
| 4 | 3 | oveq1d 7447 | . . . . 5 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐷) + 1) − 𝑖)) | 
| 5 | 2, 4 | ifbieq1d 4549 | . . . 4 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖)) | 
| 6 | 5 | mpteq2dva 5241 | . . 3 ⊢ ((𝐼‘𝐶) = (𝐼‘𝐷) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) | 
| 7 | 6 | 3ad2ant3 1135 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) | 
| 8 | ballotth.m | . . . 4 ⊢ 𝑀 ∈ ℕ | |
| 9 | ballotth.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 10 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 11 | ballotth.p | . . . 4 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 12 | ballotth.f | . . . 4 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 13 | ballotth.e | . . . 4 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 14 | ballotth.mgtn | . . . 4 ⊢ 𝑁 < 𝑀 | |
| 15 | ballotth.i | . . . 4 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 16 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | ballotlemsval 34512 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) | 
| 18 | 17 | 3ad2ant1 1133 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) | 
| 19 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | ballotlemsval 34512 | . . 3 ⊢ (𝐷 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐷) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) | 
| 20 | 19 | 3ad2ant2 1134 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐷) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) | 
| 21 | 7, 18, 20 | 3eqtr4d 2786 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 ∖ cdif 3947 ∩ cin 3949 ifcif 4524 𝒫 cpw 4599 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 infcinf 9482 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 ≤ cle 11297 − cmin 11493 / cdiv 11921 ℕcn 12267 ℤcz 12615 ...cfz 13548 ♯chash 14370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 | 
| This theorem is referenced by: ballotlemrinv0 34536 | 
| Copyright terms: Public domain | W3C validator |