Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemieq | Structured version Visualization version GIF version |
Description: If two countings share the same first tie, they also have the same swap function. (Contributed by Thierry Arnoux, 18-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
Ref | Expression |
---|---|
ballotlemieq | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . 6 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝐶) = (𝐼‘𝐷)) | |
2 | 1 | breq2d 5086 | . . . . 5 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝐶) ↔ 𝑖 ≤ (𝐼‘𝐷))) |
3 | 1 | oveq1d 7290 | . . . . . 6 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝐶) + 1) = ((𝐼‘𝐷) + 1)) |
4 | 3 | oveq1d 7290 | . . . . 5 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐷) + 1) − 𝑖)) |
5 | 2, 4 | ifbieq1d 4483 | . . . 4 ⊢ (((𝐼‘𝐶) = (𝐼‘𝐷) ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖)) |
6 | 5 | mpteq2dva 5174 | . . 3 ⊢ ((𝐼‘𝐶) = (𝐼‘𝐷) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
7 | 6 | 3ad2ant3 1134 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
8 | ballotth.m | . . . 4 ⊢ 𝑀 ∈ ℕ | |
9 | ballotth.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
10 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
11 | ballotth.p | . . . 4 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
12 | ballotth.f | . . . 4 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
13 | ballotth.e | . . . 4 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
14 | ballotth.mgtn | . . . 4 ⊢ 𝑁 < 𝑀 | |
15 | ballotth.i | . . . 4 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
16 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | ballotlemsval 32475 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
18 | 17 | 3ad2ant1 1132 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
19 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | ballotlemsval 32475 | . . 3 ⊢ (𝐷 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐷) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
20 | 19 | 3ad2ant2 1133 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐷) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐷), (((𝐼‘𝐷) + 1) − 𝑖), 𝑖))) |
21 | 7, 18, 20 | 3eqtr4d 2788 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐷 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) = (𝐼‘𝐷)) → (𝑆‘𝐶) = (𝑆‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ifcif 4459 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 infcinf 9200 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 |
This theorem is referenced by: ballotlemrinv0 32499 |
Copyright terms: Public domain | W3C validator |