MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop2 Structured version   Visualization version   GIF version

Theorem bastop2 22907
Description: A version of bastop1 22906 that doesn't have 𝐵𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2819 . . . . . . . 8 ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top))
21biimparc 479 . . . . . . 7 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top)
3 tgclb 22883 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
42, 3sylibr 234 . . . . . 6 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases)
5 bastg 22879 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
64, 5syl 17 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵))
7 simpr 484 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽)
86, 7sseqtrd 3971 . . . 4 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵𝐽)
98ex 412 . . 3 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽𝐵𝐽))
109pm4.71rd 562 . 2 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ (topGen‘𝐵) = 𝐽)))
11 bastop1 22906 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
1211pm5.32da 579 . 2 (𝐽 ∈ Top → ((𝐵𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
1310, 12bitrd 279 1 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wss 3902   cuni 4859  cfv 6481  topGenctg 17338  Topctop 22806  TopBasesctb 22858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17344  df-top 22807  df-bases 22859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator