| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bastop2 | Structured version Visualization version GIF version | ||
| Description: A version of bastop1 22880 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
| Ref | Expression |
|---|---|
| bastop2 | ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . . . . . 8 ⊢ ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top)) | |
| 2 | 1 | biimparc 479 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top) |
| 3 | tgclb 22857 | . . . . . . 7 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | |
| 4 | 2, 3 | sylibr 234 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases) |
| 5 | bastg 22853 | . . . . . 6 ⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽) | |
| 8 | 6, 7 | sseqtrd 3983 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ 𝐽) |
| 9 | 8 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 → 𝐵 ⊆ 𝐽)) |
| 10 | 9 | pm4.71rd 562 | . 2 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽))) |
| 11 | bastop1 22880 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
| 12 | 11 | pm5.32da 579 | . 2 ⊢ (𝐽 ∈ Top → ((𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
| 13 | 10, 12 | bitrd 279 | 1 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 topGenctg 17400 Topctop 22780 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topgen 17406 df-top 22781 df-bases 22833 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |