MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop2 Structured version   Visualization version   GIF version

Theorem bastop2 22848
Description: A version of bastop1 22847 that doesn't have 𝐡 βŠ† 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2 (𝐽 ∈ Top β†’ ((topGenβ€˜π΅) = 𝐽 ↔ (𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦))))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐽,𝑦

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2815 . . . . . . . 8 ((topGenβ€˜π΅) = 𝐽 β†’ ((topGenβ€˜π΅) ∈ Top ↔ 𝐽 ∈ Top))
21biimparc 479 . . . . . . 7 ((𝐽 ∈ Top ∧ (topGenβ€˜π΅) = 𝐽) β†’ (topGenβ€˜π΅) ∈ Top)
3 tgclb 22824 . . . . . . 7 (𝐡 ∈ TopBases ↔ (topGenβ€˜π΅) ∈ Top)
42, 3sylibr 233 . . . . . 6 ((𝐽 ∈ Top ∧ (topGenβ€˜π΅) = 𝐽) β†’ 𝐡 ∈ TopBases)
5 bastg 22820 . . . . . 6 (𝐡 ∈ TopBases β†’ 𝐡 βŠ† (topGenβ€˜π΅))
64, 5syl 17 . . . . 5 ((𝐽 ∈ Top ∧ (topGenβ€˜π΅) = 𝐽) β†’ 𝐡 βŠ† (topGenβ€˜π΅))
7 simpr 484 . . . . 5 ((𝐽 ∈ Top ∧ (topGenβ€˜π΅) = 𝐽) β†’ (topGenβ€˜π΅) = 𝐽)
86, 7sseqtrd 4017 . . . 4 ((𝐽 ∈ Top ∧ (topGenβ€˜π΅) = 𝐽) β†’ 𝐡 βŠ† 𝐽)
98ex 412 . . 3 (𝐽 ∈ Top β†’ ((topGenβ€˜π΅) = 𝐽 β†’ 𝐡 βŠ† 𝐽))
109pm4.71rd 562 . 2 (𝐽 ∈ Top β†’ ((topGenβ€˜π΅) = 𝐽 ↔ (𝐡 βŠ† 𝐽 ∧ (topGenβ€˜π΅) = 𝐽)))
11 bastop1 22847 . . 3 ((𝐽 ∈ Top ∧ 𝐡 βŠ† 𝐽) β†’ ((topGenβ€˜π΅) = 𝐽 ↔ βˆ€π‘₯ ∈ 𝐽 βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦)))
1211pm5.32da 578 . 2 (𝐽 ∈ Top β†’ ((𝐡 βŠ† 𝐽 ∧ (topGenβ€˜π΅) = 𝐽) ↔ (𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦))))
1310, 12bitrd 279 1 (𝐽 ∈ Top β†’ ((topGenβ€˜π΅) = 𝐽 ↔ (𝐡 βŠ† 𝐽 ∧ βˆ€π‘₯ ∈ 𝐽 βˆƒπ‘¦(𝑦 βŠ† 𝐡 ∧ π‘₯ = βˆͺ 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ€wral 3055   βŠ† wss 3943  βˆͺ cuni 4902  β€˜cfv 6536  topGenctg 17390  Topctop 22746  TopBasesctb 22799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-topgen 17396  df-top 22747  df-bases 22800
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator