MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop2 Structured version   Visualization version   GIF version

Theorem bastop2 23017
Description: A version of bastop1 23016 that doesn't have 𝐵𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2827 . . . . . . . 8 ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top))
21biimparc 479 . . . . . . 7 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top)
3 tgclb 22993 . . . . . . 7 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
42, 3sylibr 234 . . . . . 6 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases)
5 bastg 22989 . . . . . 6 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
64, 5syl 17 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵))
7 simpr 484 . . . . 5 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽)
86, 7sseqtrd 4036 . . . 4 ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵𝐽)
98ex 412 . . 3 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽𝐵𝐽))
109pm4.71rd 562 . 2 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ (topGen‘𝐵) = 𝐽)))
11 bastop1 23016 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
1211pm5.32da 579 . 2 (𝐽 ∈ Top → ((𝐵𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
1310, 12bitrd 279 1 (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵𝐽 ∧ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wss 3963   cuni 4912  cfv 6563  topGenctg 17484  Topctop 22915  TopBasesctb 22968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-topgen 17490  df-top 22916  df-bases 22969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator