|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bastop2 | Structured version Visualization version GIF version | ||
| Description: A version of bastop1 23001 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| bastop2 | ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2828 | . . . . . . . 8 ⊢ ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top)) | |
| 2 | 1 | biimparc 479 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top) | 
| 3 | tgclb 22978 | . . . . . . 7 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | |
| 4 | 2, 3 | sylibr 234 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases) | 
| 5 | bastg 22974 | . . . . . 6 ⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵)) | 
| 7 | simpr 484 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽) | |
| 8 | 6, 7 | sseqtrd 4019 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ 𝐽) | 
| 9 | 8 | ex 412 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 → 𝐵 ⊆ 𝐽)) | 
| 10 | 9 | pm4.71rd 562 | . 2 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽))) | 
| 11 | bastop1 23001 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
| 12 | 11 | pm5.32da 579 | . 2 ⊢ (𝐽 ∈ Top → ((𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | 
| 13 | 10, 12 | bitrd 279 | 1 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 ∪ cuni 4906 ‘cfv 6560 topGenctg 17483 Topctop 22900 TopBasesctb 22953 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-topgen 17489 df-top 22901 df-bases 22954 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |