Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bastop2 | Structured version Visualization version GIF version |
Description: A version of bastop1 22143 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
Ref | Expression |
---|---|
bastop2 | ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . . . 8 ⊢ ((topGen‘𝐵) = 𝐽 → ((topGen‘𝐵) ∈ Top ↔ 𝐽 ∈ Top)) | |
2 | 1 | biimparc 480 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) ∈ Top) |
3 | tgclb 22120 | . . . . . . 7 ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | |
4 | 2, 3 | sylibr 233 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ∈ TopBases) |
5 | bastg 22116 | . . . . . 6 ⊢ (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ (topGen‘𝐵)) |
7 | simpr 485 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → (topGen‘𝐵) = 𝐽) | |
8 | 6, 7 | sseqtrd 3961 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (topGen‘𝐵) = 𝐽) → 𝐵 ⊆ 𝐽) |
9 | 8 | ex 413 | . . 3 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 → 𝐵 ⊆ 𝐽)) |
10 | 9 | pm4.71rd 563 | . 2 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽))) |
11 | bastop1 22143 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
12 | 11 | pm5.32da 579 | . 2 ⊢ (𝐽 ∈ Top → ((𝐵 ⊆ 𝐽 ∧ (topGen‘𝐵) = 𝐽) ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
13 | 10, 12 | bitrd 278 | 1 ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 topGenctg 17148 Topctop 22042 TopBasesctb 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 df-top 22043 df-bases 22096 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |