![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bastop1 | Structured version Visualization version GIF version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGenβπ΅) = π½ " to express "π΅ is a basis for topology π½ " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 | β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β βπ₯ β π½ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 22471 | . . . . 5 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ΅) β (topGenβπ½)) | |
2 | tgtop 22476 | . . . . . 6 β’ (π½ β Top β (topGenβπ½) = π½) | |
3 | 2 | adantr 482 | . . . . 5 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ½) = π½) |
4 | 1, 3 | sseqtrd 4023 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β (topGenβπ΅) β π½) |
5 | eqss 3998 | . . . . 5 β’ ((topGenβπ΅) = π½ β ((topGenβπ΅) β π½ β§ π½ β (topGenβπ΅))) | |
6 | 5 | baib 537 | . . . 4 β’ ((topGenβπ΅) β π½ β ((topGenβπ΅) = π½ β π½ β (topGenβπ΅))) |
7 | 4, 6 | syl 17 | . . 3 β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β π½ β (topGenβπ΅))) |
8 | dfss3 3971 | . . 3 β’ (π½ β (topGenβπ΅) β βπ₯ β π½ π₯ β (topGenβπ΅)) | |
9 | 7, 8 | bitrdi 287 | . 2 β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β βπ₯ β π½ π₯ β (topGenβπ΅))) |
10 | ssexg 5324 | . . . . 5 β’ ((π΅ β π½ β§ π½ β Top) β π΅ β V) | |
11 | 10 | ancoms 460 | . . . 4 β’ ((π½ β Top β§ π΅ β π½) β π΅ β V) |
12 | eltg3 22465 | . . . 4 β’ (π΅ β V β (π₯ β (topGenβπ΅) β βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) | |
13 | 11, 12 | syl 17 | . . 3 β’ ((π½ β Top β§ π΅ β π½) β (π₯ β (topGenβπ΅) β βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
14 | 13 | ralbidv 3178 | . 2 β’ ((π½ β Top β§ π΅ β π½) β (βπ₯ β π½ π₯ β (topGenβπ΅) β βπ₯ β π½ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
15 | 9, 14 | bitrd 279 | 1 β’ ((π½ β Top β§ π΅ β π½) β ((topGenβπ΅) = π½ β βπ₯ β π½ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 βwex 1782 β wcel 2107 βwral 3062 Vcvv 3475 β wss 3949 βͺ cuni 4909 βcfv 6544 topGenctg 17383 Topctop 22395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-topgen 17389 df-top 22396 |
This theorem is referenced by: bastop2 22497 |
Copyright terms: Public domain | W3C validator |