Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bastop1 | Structured version Visualization version GIF version |
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
bastop1 | ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgss 22026 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐵) ⊆ (topGen‘𝐽)) | |
2 | tgtop 22031 | . . . . . 6 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐽) = 𝐽) |
4 | 1, 3 | sseqtrd 3957 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (topGen‘𝐵) ⊆ 𝐽) |
5 | eqss 3932 | . . . . 5 ⊢ ((topGen‘𝐵) = 𝐽 ↔ ((topGen‘𝐵) ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵))) | |
6 | 5 | baib 535 | . . . 4 ⊢ ((topGen‘𝐵) ⊆ 𝐽 → ((topGen‘𝐵) = 𝐽 ↔ 𝐽 ⊆ (topGen‘𝐵))) |
7 | 4, 6 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ 𝐽 ⊆ (topGen‘𝐵))) |
8 | dfss3 3905 | . . 3 ⊢ (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵)) | |
9 | 7, 8 | bitrdi 286 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵))) |
10 | ssexg 5242 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top) → 𝐵 ∈ V) | |
11 | 10 | ancoms 458 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → 𝐵 ∈ V) |
12 | eltg3 22020 | . . . 4 ⊢ (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
14 | 13 | ralbidv 3120 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → (∀𝑥 ∈ 𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
15 | 9, 14 | bitrd 278 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 topGenctg 17065 Topctop 21950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topgen 17071 df-top 21951 |
This theorem is referenced by: bastop2 22052 |
Copyright terms: Public domain | W3C validator |