MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop1 Structured version   Visualization version   GIF version

Theorem bastop1 21576
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
bastop1 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦

Proof of Theorem bastop1
StepHypRef Expression
1 tgss 21551 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐵) ⊆ (topGen‘𝐽))
2 tgtop 21556 . . . . . 6 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 484 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐽) = 𝐽)
41, 3sseqtrd 3983 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐵) ⊆ 𝐽)
5 eqss 3958 . . . . 5 ((topGen‘𝐵) = 𝐽 ↔ ((topGen‘𝐵) ⊆ 𝐽𝐽 ⊆ (topGen‘𝐵)))
65baib 539 . . . 4 ((topGen‘𝐵) ⊆ 𝐽 → ((topGen‘𝐵) = 𝐽𝐽 ⊆ (topGen‘𝐵)))
74, 6syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽𝐽 ⊆ (topGen‘𝐵)))
8 dfss3 3932 . . 3 (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵))
97, 8syl6bb 290 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵)))
10 ssexg 5200 . . . . 5 ((𝐵𝐽𝐽 ∈ Top) → 𝐵 ∈ V)
1110ancoms 462 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵 ∈ V)
12 eltg3 21545 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
1311, 12syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
1413ralbidv 3185 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
159, 14bitrd 282 1 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wral 3126  Vcvv 3471  wss 3910   cuni 4811  cfv 6328  topGenctg 16689  Topctop 21476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6287  df-fun 6330  df-fv 6336  df-topgen 16695  df-top 21477
This theorem is referenced by:  bastop2  21577
  Copyright terms: Public domain W3C validator