MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop1 Structured version   Visualization version   GIF version

Theorem bastop1 22887
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
bastop1 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦

Proof of Theorem bastop1
StepHypRef Expression
1 tgss 22862 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐵) ⊆ (topGen‘𝐽))
2 tgtop 22867 . . . . . 6 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐽) = 𝐽)
41, 3sseqtrd 3986 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐵) ⊆ 𝐽)
5 eqss 3965 . . . . 5 ((topGen‘𝐵) = 𝐽 ↔ ((topGen‘𝐵) ⊆ 𝐽𝐽 ⊆ (topGen‘𝐵)))
65baib 535 . . . 4 ((topGen‘𝐵) ⊆ 𝐽 → ((topGen‘𝐵) = 𝐽𝐽 ⊆ (topGen‘𝐵)))
74, 6syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽𝐽 ⊆ (topGen‘𝐵)))
8 dfss3 3938 . . 3 (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵))
97, 8bitrdi 287 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵)))
10 ssexg 5281 . . . . 5 ((𝐵𝐽𝐽 ∈ Top) → 𝐵 ∈ V)
1110ancoms 458 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵 ∈ V)
12 eltg3 22856 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
1311, 12syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
1413ralbidv 3157 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
159, 14bitrd 279 1 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  Vcvv 3450  wss 3917   cuni 4874  cfv 6514  topGenctg 17407  Topctop 22787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topgen 17413  df-top 22788
This theorem is referenced by:  bastop2  22888
  Copyright terms: Public domain W3C validator