MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastop1 Structured version   Visualization version   GIF version

Theorem bastop1 22878
Description: A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
bastop1 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦

Proof of Theorem bastop1
StepHypRef Expression
1 tgss 22853 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐵) ⊆ (topGen‘𝐽))
2 tgtop 22858 . . . . . 6 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
32adantr 480 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐽) = 𝐽)
41, 3sseqtrd 3972 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (topGen‘𝐵) ⊆ 𝐽)
5 eqss 3951 . . . . 5 ((topGen‘𝐵) = 𝐽 ↔ ((topGen‘𝐵) ⊆ 𝐽𝐽 ⊆ (topGen‘𝐵)))
65baib 535 . . . 4 ((topGen‘𝐵) ⊆ 𝐽 → ((topGen‘𝐵) = 𝐽𝐽 ⊆ (topGen‘𝐵)))
74, 6syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽𝐽 ⊆ (topGen‘𝐵)))
8 dfss3 3924 . . 3 (𝐽 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵))
97, 8bitrdi 287 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵)))
10 ssexg 5262 . . . . 5 ((𝐵𝐽𝐽 ∈ Top) → 𝐵 ∈ V)
1110ancoms 458 . . . 4 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵 ∈ V)
12 eltg3 22847 . . . 4 (𝐵 ∈ V → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
1311, 12syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
1413ralbidv 3152 . 2 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (∀𝑥𝐽 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
159, 14bitrd 279 1 ((𝐽 ∈ Top ∧ 𝐵𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥𝐽𝑦(𝑦𝐵𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3436  wss 3903   cuni 4858  cfv 6482  topGenctg 17341  Topctop 22778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-topgen 17347  df-top 22779
This theorem is referenced by:  bastop2  22879
  Copyright terms: Public domain W3C validator