Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version |
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenelss.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenelss.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenelss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caragenelss.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
caragenelss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenelss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | caragenelss.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragenelss.s | . . . . . 6 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 2, 3 | caragenel 44033 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥)))) |
5 | 1, 4 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥))) |
6 | 5 | simpld 495 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
7 | caragenelss.x | . . . . . 6 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | 7 | eqcomi 2747 | . . . . 5 ⊢ ∪ dom 𝑂 = 𝑋 |
9 | 8 | pweqi 4551 | . . . 4 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
11 | 6, 10 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
12 | elpwg 4536 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
14 | 11, 13 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 +𝑒 cxad 12846 OutMeascome 44027 CaraGenccaragen 44029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-caragen 44030 |
This theorem is referenced by: caragenuncllem 44050 caragenuncl 44051 |
Copyright terms: Public domain | W3C validator |