Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenelss Structured version   Visualization version   GIF version

Theorem caragenelss 41502
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenelss.o (𝜑𝑂 ∈ OutMeas)
caragenelss.s 𝑆 = (CaraGen‘𝑂)
caragenelss.a (𝜑𝐴𝑆)
caragenelss.x 𝑋 = dom 𝑂
Assertion
Ref Expression
caragenelss (𝜑𝐴𝑋)

Proof of Theorem caragenelss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caragenelss.a . . . . 5 (𝜑𝐴𝑆)
2 caragenelss.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
3 caragenelss.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
42, 3caragenel 41496 . . . . 5 (𝜑 → (𝐴𝑆 ↔ (𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 dom 𝑂((𝑂‘(𝑥𝐴)) +𝑒 (𝑂‘(𝑥𝐴))) = (𝑂𝑥))))
51, 4mpbid 224 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 dom 𝑂((𝑂‘(𝑥𝐴)) +𝑒 (𝑂‘(𝑥𝐴))) = (𝑂𝑥)))
65simpld 490 . . 3 (𝜑𝐴 ∈ 𝒫 dom 𝑂)
7 caragenelss.x . . . . . 6 𝑋 = dom 𝑂
87eqcomi 2834 . . . . 5 dom 𝑂 = 𝑋
98pweqi 4382 . . . 4 𝒫 dom 𝑂 = 𝒫 𝑋
109a1i 11 . . 3 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
116, 10eleqtrd 2908 . 2 (𝜑𝐴 ∈ 𝒫 𝑋)
12 elpwg 4386 . . 3 (𝐴𝑆 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
131, 12syl 17 . 2 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1411, 13mpbid 224 1 (𝜑𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  cdif 3795  cin 3797  wss 3798  𝒫 cpw 4378   cuni 4658  dom cdm 5342  cfv 6123  (class class class)co 6905   +𝑒 cxad 12230  OutMeascome 41490  CaraGenccaragen 41492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fv 6131  df-ov 6908  df-caragen 41493
This theorem is referenced by:  caragenuncllem  41513  caragenuncl  41514
  Copyright terms: Public domain W3C validator