| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version | ||
| Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenelss.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenelss.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| caragenelss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caragenelss.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| Ref | Expression |
|---|---|
| caragenelss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragenelss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 2 | caragenelss.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | caragenelss.s | . . . . . 6 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 4 | 2, 3 | caragenel 46496 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥)))) |
| 5 | 1, 4 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥))) |
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
| 7 | caragenelss.x | . . . . . 6 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 8 | 7 | eqcomi 2738 | . . . . 5 ⊢ ∪ dom 𝑂 = 𝑋 |
| 9 | 8 | pweqi 4567 | . . . 4 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
| 11 | 6, 10 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 12 | elpwg 4554 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 14 | 11, 13 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ∩ cin 3902 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 +𝑒 cxad 13012 OutMeascome 46490 CaraGenccaragen 46492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-caragen 46493 |
| This theorem is referenced by: caragenuncllem 46513 caragenuncl 46514 |
| Copyright terms: Public domain | W3C validator |