Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenelss Structured version   Visualization version   GIF version

Theorem caragenelss 46422
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenelss.o (𝜑𝑂 ∈ OutMeas)
caragenelss.s 𝑆 = (CaraGen‘𝑂)
caragenelss.a (𝜑𝐴𝑆)
caragenelss.x 𝑋 = dom 𝑂
Assertion
Ref Expression
caragenelss (𝜑𝐴𝑋)

Proof of Theorem caragenelss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caragenelss.a . . . . 5 (𝜑𝐴𝑆)
2 caragenelss.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
3 caragenelss.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
42, 3caragenel 46416 . . . . 5 (𝜑 → (𝐴𝑆 ↔ (𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 dom 𝑂((𝑂‘(𝑥𝐴)) +𝑒 (𝑂‘(𝑥𝐴))) = (𝑂𝑥))))
51, 4mpbid 232 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 dom 𝑂((𝑂‘(𝑥𝐴)) +𝑒 (𝑂‘(𝑥𝐴))) = (𝑂𝑥)))
65simpld 494 . . 3 (𝜑𝐴 ∈ 𝒫 dom 𝑂)
7 caragenelss.x . . . . . 6 𝑋 = dom 𝑂
87eqcomi 2749 . . . . 5 dom 𝑂 = 𝑋
98pweqi 4638 . . . 4 𝒫 dom 𝑂 = 𝒫 𝑋
109a1i 11 . . 3 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
116, 10eleqtrd 2846 . 2 (𝜑𝐴 ∈ 𝒫 𝑋)
12 elpwg 4625 . . 3 (𝐴𝑆 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
131, 12syl 17 . 2 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1411, 13mpbid 232 1 (𝜑𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cfv 6573  (class class class)co 7448   +𝑒 cxad 13173  OutMeascome 46410  CaraGenccaragen 46412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-caragen 46413
This theorem is referenced by:  caragenuncllem  46433  caragenuncl  46434
  Copyright terms: Public domain W3C validator