![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version |
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenelss.o | β’ (π β π β OutMeas) |
caragenelss.s | β’ π = (CaraGenβπ) |
caragenelss.a | β’ (π β π΄ β π) |
caragenelss.x | β’ π = βͺ dom π |
Ref | Expression |
---|---|
caragenelss | β’ (π β π΄ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenelss.a | . . . . 5 β’ (π β π΄ β π) | |
2 | caragenelss.o | . . . . . 6 β’ (π β π β OutMeas) | |
3 | caragenelss.s | . . . . . 6 β’ π = (CaraGenβπ) | |
4 | 2, 3 | caragenel 45945 | . . . . 5 β’ (π β (π΄ β π β (π΄ β π« βͺ dom π β§ βπ₯ β π« βͺ dom π((πβ(π₯ β© π΄)) +π (πβ(π₯ β π΄))) = (πβπ₯)))) |
5 | 1, 4 | mpbid 231 | . . . 4 β’ (π β (π΄ β π« βͺ dom π β§ βπ₯ β π« βͺ dom π((πβ(π₯ β© π΄)) +π (πβ(π₯ β π΄))) = (πβπ₯))) |
6 | 5 | simpld 493 | . . 3 β’ (π β π΄ β π« βͺ dom π) |
7 | caragenelss.x | . . . . . 6 β’ π = βͺ dom π | |
8 | 7 | eqcomi 2734 | . . . . 5 β’ βͺ dom π = π |
9 | 8 | pweqi 4614 | . . . 4 β’ π« βͺ dom π = π« π |
10 | 9 | a1i 11 | . . 3 β’ (π β π« βͺ dom π = π« π) |
11 | 6, 10 | eleqtrd 2827 | . 2 β’ (π β π΄ β π« π) |
12 | elpwg 4601 | . . 3 β’ (π΄ β π β (π΄ β π« π β π΄ β π)) | |
13 | 1, 12 | syl 17 | . 2 β’ (π β (π΄ β π« π β π΄ β π)) |
14 | 11, 13 | mpbid 231 | 1 β’ (π β π΄ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 β cdif 3937 β© cin 3939 β wss 3940 π« cpw 4598 βͺ cuni 4903 dom cdm 5672 βcfv 6542 (class class class)co 7415 +π cxad 13120 OutMeascome 45939 CaraGenccaragen 45941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7418 df-caragen 45942 |
This theorem is referenced by: caragenuncllem 45962 caragenuncl 45963 |
Copyright terms: Public domain | W3C validator |