![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version |
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenelss.o | β’ (π β π β OutMeas) |
caragenelss.s | β’ π = (CaraGenβπ) |
caragenelss.a | β’ (π β π΄ β π) |
caragenelss.x | β’ π = βͺ dom π |
Ref | Expression |
---|---|
caragenelss | β’ (π β π΄ β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenelss.a | . . . . 5 β’ (π β π΄ β π) | |
2 | caragenelss.o | . . . . . 6 β’ (π β π β OutMeas) | |
3 | caragenelss.s | . . . . . 6 β’ π = (CaraGenβπ) | |
4 | 2, 3 | caragenel 45197 | . . . . 5 β’ (π β (π΄ β π β (π΄ β π« βͺ dom π β§ βπ₯ β π« βͺ dom π((πβ(π₯ β© π΄)) +π (πβ(π₯ β π΄))) = (πβπ₯)))) |
5 | 1, 4 | mpbid 231 | . . . 4 β’ (π β (π΄ β π« βͺ dom π β§ βπ₯ β π« βͺ dom π((πβ(π₯ β© π΄)) +π (πβ(π₯ β π΄))) = (πβπ₯))) |
6 | 5 | simpld 495 | . . 3 β’ (π β π΄ β π« βͺ dom π) |
7 | caragenelss.x | . . . . . 6 β’ π = βͺ dom π | |
8 | 7 | eqcomi 2741 | . . . . 5 β’ βͺ dom π = π |
9 | 8 | pweqi 4617 | . . . 4 β’ π« βͺ dom π = π« π |
10 | 9 | a1i 11 | . . 3 β’ (π β π« βͺ dom π = π« π) |
11 | 6, 10 | eleqtrd 2835 | . 2 β’ (π β π΄ β π« π) |
12 | elpwg 4604 | . . 3 β’ (π΄ β π β (π΄ β π« π β π΄ β π)) | |
13 | 1, 12 | syl 17 | . 2 β’ (π β (π΄ β π« π β π΄ β π)) |
14 | 11, 13 | mpbid 231 | 1 β’ (π β π΄ β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β cdif 3944 β© cin 3946 β wss 3947 π« cpw 4601 βͺ cuni 4907 dom cdm 5675 βcfv 6540 (class class class)co 7405 +π cxad 13086 OutMeascome 45191 CaraGenccaragen 45193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-caragen 45194 |
This theorem is referenced by: caragenuncllem 45214 caragenuncl 45215 |
Copyright terms: Public domain | W3C validator |