Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenelss Structured version   Visualization version   GIF version

Theorem caragenelss 45951
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenelss.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragenelss.s 𝑆 = (CaraGenβ€˜π‘‚)
caragenelss.a (πœ‘ β†’ 𝐴 ∈ 𝑆)
caragenelss.x 𝑋 = βˆͺ dom 𝑂
Assertion
Ref Expression
caragenelss (πœ‘ β†’ 𝐴 βŠ† 𝑋)

Proof of Theorem caragenelss
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 caragenelss.a . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑆)
2 caragenelss.o . . . . . 6 (πœ‘ β†’ 𝑂 ∈ OutMeas)
3 caragenelss.s . . . . . 6 𝑆 = (CaraGenβ€˜π‘‚)
42, 3caragenel 45945 . . . . 5 (πœ‘ β†’ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘₯ ∩ 𝐴)) +𝑒 (π‘‚β€˜(π‘₯ βˆ– 𝐴))) = (π‘‚β€˜π‘₯))))
51, 4mpbid 231 . . . 4 (πœ‘ β†’ (𝐴 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘₯ ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘₯ ∩ 𝐴)) +𝑒 (π‘‚β€˜(π‘₯ βˆ– 𝐴))) = (π‘‚β€˜π‘₯)))
65simpld 493 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝒫 βˆͺ dom 𝑂)
7 caragenelss.x . . . . . 6 𝑋 = βˆͺ dom 𝑂
87eqcomi 2734 . . . . 5 βˆͺ dom 𝑂 = 𝑋
98pweqi 4614 . . . 4 𝒫 βˆͺ dom 𝑂 = 𝒫 𝑋
109a1i 11 . . 3 (πœ‘ β†’ 𝒫 βˆͺ dom 𝑂 = 𝒫 𝑋)
116, 10eleqtrd 2827 . 2 (πœ‘ β†’ 𝐴 ∈ 𝒫 𝑋)
12 elpwg 4601 . . 3 (𝐴 ∈ 𝑆 β†’ (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 βŠ† 𝑋))
131, 12syl 17 . 2 (πœ‘ β†’ (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 βŠ† 𝑋))
1411, 13mpbid 231 1 (πœ‘ β†’ 𝐴 βŠ† 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051   βˆ– cdif 3937   ∩ cin 3939   βŠ† wss 3940  π’« cpw 4598  βˆͺ cuni 4903  dom cdm 5672  β€˜cfv 6542  (class class class)co 7415   +𝑒 cxad 13120  OutMeascome 45939  CaraGenccaragen 45941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7418  df-caragen 45942
This theorem is referenced by:  caragenuncllem  45962  caragenuncl  45963
  Copyright terms: Public domain W3C validator