![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenelss | Structured version Visualization version GIF version |
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenelss.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenelss.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
caragenelss.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caragenelss.x | ⊢ 𝑋 = ∪ dom 𝑂 |
Ref | Expression |
---|---|
caragenelss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenelss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | caragenelss.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragenelss.s | . . . . . 6 ⊢ 𝑆 = (CaraGen‘𝑂) | |
4 | 2, 3 | caragenel 46152 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥)))) |
5 | 1, 4 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑥 ∩ 𝐴)) +𝑒 (𝑂‘(𝑥 ∖ 𝐴))) = (𝑂‘𝑥))) |
6 | 5 | simpld 493 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂) |
7 | caragenelss.x | . . . . . 6 ⊢ 𝑋 = ∪ dom 𝑂 | |
8 | 7 | eqcomi 2735 | . . . . 5 ⊢ ∪ dom 𝑂 = 𝑋 |
9 | 8 | pweqi 4613 | . . . 4 ⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋) |
11 | 6, 10 | eleqtrd 2828 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
12 | elpwg 4600 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
14 | 11, 13 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3943 ∩ cin 3945 ⊆ wss 3946 𝒫 cpw 4597 ∪ cuni 4905 dom cdm 5674 ‘cfv 6546 (class class class)co 7416 +𝑒 cxad 13138 OutMeascome 46146 CaraGenccaragen 46148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-caragen 46149 |
This theorem is referenced by: caragenuncllem 46169 caragenuncl 46170 |
Copyright terms: Public domain | W3C validator |