Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenelss Structured version   Visualization version   GIF version

Theorem caragenelss 46457
Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenelss.o (𝜑𝑂 ∈ OutMeas)
caragenelss.s 𝑆 = (CaraGen‘𝑂)
caragenelss.a (𝜑𝐴𝑆)
caragenelss.x 𝑋 = dom 𝑂
Assertion
Ref Expression
caragenelss (𝜑𝐴𝑋)

Proof of Theorem caragenelss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caragenelss.a . . . . 5 (𝜑𝐴𝑆)
2 caragenelss.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
3 caragenelss.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
42, 3caragenel 46451 . . . . 5 (𝜑 → (𝐴𝑆 ↔ (𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 dom 𝑂((𝑂‘(𝑥𝐴)) +𝑒 (𝑂‘(𝑥𝐴))) = (𝑂𝑥))))
51, 4mpbid 232 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀𝑥 ∈ 𝒫 dom 𝑂((𝑂‘(𝑥𝐴)) +𝑒 (𝑂‘(𝑥𝐴))) = (𝑂𝑥)))
65simpld 494 . . 3 (𝜑𝐴 ∈ 𝒫 dom 𝑂)
7 caragenelss.x . . . . . 6 𝑋 = dom 𝑂
87eqcomi 2744 . . . . 5 dom 𝑂 = 𝑋
98pweqi 4621 . . . 4 𝒫 dom 𝑂 = 𝒫 𝑋
109a1i 11 . . 3 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
116, 10eleqtrd 2841 . 2 (𝜑𝐴 ∈ 𝒫 𝑋)
12 elpwg 4608 . . 3 (𝐴𝑆 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
131, 12syl 17 . 2 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1411, 13mpbid 232 1 (𝜑𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  cdif 3960  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cfv 6563  (class class class)co 7431   +𝑒 cxad 13150  OutMeascome 46445  CaraGenccaragen 46447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-caragen 46448
This theorem is referenced by:  caragenuncllem  46468  caragenuncl  46469
  Copyright terms: Public domain W3C validator