Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carageneld Structured version   Visualization version   GIF version

Theorem carageneld 46493
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
carageneld.o (𝜑𝑂 ∈ OutMeas)
carageneld.x 𝑋 = dom 𝑂
carageneld.s 𝑆 = (CaraGen‘𝑂)
carageneld.e (𝜑𝐸 ∈ 𝒫 𝑋)
carageneld.a ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
Assertion
Ref Expression
carageneld (𝜑𝐸𝑆)
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎   𝜑,𝑎
Allowed substitution hints:   𝑆(𝑎)   𝑋(𝑎)

Proof of Theorem carageneld
StepHypRef Expression
1 carageneld.e . . . 4 (𝜑𝐸 ∈ 𝒫 𝑋)
2 carageneld.x . . . . 5 𝑋 = dom 𝑂
32pweqi 4567 . . . 4 𝒫 𝑋 = 𝒫 dom 𝑂
41, 3eleqtrdi 2838 . . 3 (𝜑𝐸 ∈ 𝒫 dom 𝑂)
5 simpl 482 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝜑)
63eleq2i 2820 . . . . . . . 8 (𝑎 ∈ 𝒫 𝑋𝑎 ∈ 𝒫 dom 𝑂)
76bicomi 224 . . . . . . 7 (𝑎 ∈ 𝒫 dom 𝑂𝑎 ∈ 𝒫 𝑋)
87biimpi 216 . . . . . 6 (𝑎 ∈ 𝒫 dom 𝑂𝑎 ∈ 𝒫 𝑋)
98adantl 481 . . . . 5 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → 𝑎 ∈ 𝒫 𝑋)
10 carageneld.a . . . . 5 ((𝜑𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
115, 9, 10syl2anc 584 . . . 4 ((𝜑𝑎 ∈ 𝒫 dom 𝑂) → ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
1211ralrimiva 3121 . . 3 (𝜑 → ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))
134, 12jca 511 . 2 (𝜑 → (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
14 carageneld.o . . 3 (𝜑𝑂 ∈ OutMeas)
15 carageneld.s . . 3 𝑆 = (CaraGen‘𝑂)
1614, 15caragenel 46486 . 2 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
1713, 16mpbird 257 1 (𝜑𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3900  cin 3902  𝒫 cpw 4551   cuni 4858  dom cdm 5619  cfv 6482  (class class class)co 7349   +𝑒 cxad 13012  OutMeascome 46480  CaraGenccaragen 46482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-caragen 46483
This theorem is referenced by:  caragen0  46497  caragenunidm  46499  caragenuncl  46504  caragendifcl  46505  carageniuncl  46514  caragenel2d  46523
  Copyright terms: Public domain W3C validator