![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > carageneld | Structured version Visualization version GIF version |
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
carageneld.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
carageneld.x | ⊢ 𝑋 = ∪ dom 𝑂 |
carageneld.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
carageneld.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) |
carageneld.a | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
Ref | Expression |
---|---|
carageneld | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carageneld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) | |
2 | carageneld.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 2 | pweqi 4623 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
4 | 1, 3 | eleqtrdi 2836 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 ∪ dom 𝑂) |
5 | simpl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝜑) | |
6 | 3 | eleq2i 2818 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ∈ 𝒫 ∪ dom 𝑂) |
7 | 6 | bicomi 223 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝑎 ∈ 𝒫 𝑋) |
8 | 7 | biimpi 215 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ∈ 𝒫 𝑋) |
9 | 8 | adantl 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ∈ 𝒫 𝑋) |
10 | carageneld.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) | |
11 | 5, 9, 10 | syl2anc 582 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
12 | 11 | ralrimiva 3136 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
13 | 4, 12 | jca 510 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
14 | carageneld.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
15 | carageneld.s | . . 3 ⊢ 𝑆 = (CaraGen‘𝑂) | |
16 | 14, 15 | caragenel 46116 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
17 | 13, 16 | mpbird 256 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3944 ∩ cin 3946 𝒫 cpw 4607 ∪ cuni 4913 dom cdm 5682 ‘cfv 6554 (class class class)co 7424 +𝑒 cxad 13144 OutMeascome 46110 CaraGenccaragen 46112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-caragen 46113 |
This theorem is referenced by: caragen0 46127 caragenunidm 46129 caragenuncl 46134 caragendifcl 46135 carageniuncl 46144 caragenel2d 46153 |
Copyright terms: Public domain | W3C validator |