Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > carageneld | Structured version Visualization version GIF version |
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
carageneld.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
carageneld.x | ⊢ 𝑋 = ∪ dom 𝑂 |
carageneld.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
carageneld.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) |
carageneld.a | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
Ref | Expression |
---|---|
carageneld | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carageneld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) | |
2 | carageneld.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 2 | pweqi 4556 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
4 | 1, 3 | eleqtrdi 2850 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 ∪ dom 𝑂) |
5 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝜑) | |
6 | 3 | eleq2i 2831 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ∈ 𝒫 ∪ dom 𝑂) |
7 | 6 | bicomi 223 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝑎 ∈ 𝒫 𝑋) |
8 | 7 | biimpi 215 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ∈ 𝒫 𝑋) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ∈ 𝒫 𝑋) |
10 | carageneld.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) | |
11 | 5, 9, 10 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
12 | 11 | ralrimiva 3109 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
13 | 4, 12 | jca 511 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
14 | carageneld.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
15 | carageneld.s | . . 3 ⊢ 𝑆 = (CaraGen‘𝑂) | |
16 | 14, 15 | caragenel 43987 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
17 | 13, 16 | mpbird 256 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∖ cdif 3888 ∩ cin 3890 𝒫 cpw 4538 ∪ cuni 4844 dom cdm 5588 ‘cfv 6430 (class class class)co 7268 +𝑒 cxad 12828 OutMeascome 43981 CaraGenccaragen 43983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-caragen 43984 |
This theorem is referenced by: caragen0 43998 caragenunidm 44000 caragenuncl 44005 caragendifcl 44006 carageniuncl 44015 caragenel2d 44024 |
Copyright terms: Public domain | W3C validator |