Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > carageneld | Structured version Visualization version GIF version |
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
carageneld.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
carageneld.x | ⊢ 𝑋 = ∪ dom 𝑂 |
carageneld.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
carageneld.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) |
carageneld.a | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
Ref | Expression |
---|---|
carageneld | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carageneld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) | |
2 | carageneld.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 2 | pweqi 4555 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
4 | 1, 3 | eleqtrdi 2847 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 ∪ dom 𝑂) |
5 | simpl 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝜑) | |
6 | 3 | eleq2i 2828 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ∈ 𝒫 ∪ dom 𝑂) |
7 | 6 | bicomi 223 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝑎 ∈ 𝒫 𝑋) |
8 | 7 | biimpi 215 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ∈ 𝒫 𝑋) |
9 | 8 | adantl 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ∈ 𝒫 𝑋) |
10 | carageneld.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) | |
11 | 5, 9, 10 | syl2anc 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
12 | 11 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
13 | 4, 12 | jca 513 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
14 | carageneld.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
15 | carageneld.s | . . 3 ⊢ 𝑆 = (CaraGen‘𝑂) | |
16 | 14, 15 | caragenel 44083 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
17 | 13, 16 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∖ cdif 3889 ∩ cin 3891 𝒫 cpw 4539 ∪ cuni 4844 dom cdm 5600 ‘cfv 6458 (class class class)co 7307 +𝑒 cxad 12892 OutMeascome 44077 CaraGenccaragen 44079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-caragen 44080 |
This theorem is referenced by: caragen0 44094 caragenunidm 44096 caragenuncl 44101 caragendifcl 44102 carageniuncl 44111 caragenel2d 44120 |
Copyright terms: Public domain | W3C validator |