| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > carageneld | Structured version Visualization version GIF version | ||
| Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| carageneld.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| carageneld.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| carageneld.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| carageneld.e | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) |
| carageneld.a | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
| Ref | Expression |
|---|---|
| carageneld | ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | carageneld.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) | |
| 2 | carageneld.x | . . . . 5 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | 2 | pweqi 4567 | . . . 4 ⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
| 4 | 1, 3 | eleqtrdi 2838 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝒫 ∪ dom 𝑂) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝜑) | |
| 6 | 3 | eleq2i 2820 | . . . . . . . 8 ⊢ (𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ∈ 𝒫 ∪ dom 𝑂) |
| 7 | 6 | bicomi 224 | . . . . . . 7 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝑎 ∈ 𝒫 𝑋) |
| 8 | 7 | biimpi 216 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ∈ 𝒫 𝑋) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → 𝑎 ∈ 𝒫 𝑋) |
| 10 | carageneld.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) | |
| 11 | 5, 9, 10 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
| 12 | 11 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) |
| 13 | 4, 12 | jca 511 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
| 14 | carageneld.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 15 | carageneld.s | . . 3 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 16 | 14, 15 | caragenel 46486 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ∩ cin 3902 𝒫 cpw 4551 ∪ cuni 4858 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 +𝑒 cxad 13012 OutMeascome 46480 CaraGenccaragen 46482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-caragen 46483 |
| This theorem is referenced by: caragen0 46497 caragenunidm 46499 caragenuncl 46504 caragendifcl 46505 carageniuncl 46514 caragenel2d 46523 |
| Copyright terms: Public domain | W3C validator |