MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfiluexsm Structured version   Visualization version   GIF version

Theorem cfiluexsm 24300
Description: For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
cfiluexsm ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
Distinct variable groups:   𝐹,𝑎   𝑉,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑎)

Proof of Theorem cfiluexsm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iscfilu 24298 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
21simplbda 499 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
323adant3 1132 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
4 sseq2 4009 . . . . 5 (𝑣 = 𝑉 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑎 × 𝑎) ⊆ 𝑉))
54rexbidv 3178 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
65rspcv 3617 . . 3 (𝑉𝑈 → (∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
763ad2ant3 1135 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → (∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
83, 7mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  wss 3950   × cxp 5682  cfv 6560  fBascfbas 21353  UnifOncust 24209  CauFiluccfilu 24296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-iota 6513  df-fun 6562  df-fv 6568  df-ust 24210  df-cfilu 24297
This theorem is referenced by:  fmucnd  24302  cfilucfil  24573
  Copyright terms: Public domain W3C validator