MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfiluexsm Structured version   Visualization version   GIF version

Theorem cfiluexsm 24211
Description: For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
cfiluexsm ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
Distinct variable groups:   𝐹,𝑎   𝑉,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑎)

Proof of Theorem cfiluexsm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iscfilu 24209 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
21simplbda 499 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
323adant3 1132 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
4 sseq2 3970 . . . . 5 (𝑣 = 𝑉 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑎 × 𝑎) ⊆ 𝑉))
54rexbidv 3157 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
65rspcv 3581 . . 3 (𝑉𝑈 → (∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
763ad2ant3 1135 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → (∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
83, 7mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   × cxp 5629  cfv 6499  fBascfbas 21285  UnifOncust 24121  CauFiluccfilu 24207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ust 24122  df-cfilu 24208
This theorem is referenced by:  fmucnd  24213  cfilucfil  24481
  Copyright terms: Public domain W3C validator