| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfiluexsm | Structured version Visualization version GIF version | ||
| Description: For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| Ref | Expression |
|---|---|
| cfiluexsm | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscfilu 24212 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) | |
| 2 | 1 | simplbda 499 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) |
| 4 | sseq2 3958 | . . . . 5 ⊢ (𝑣 = 𝑉 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑎 × 𝑎) ⊆ 𝑉)) | |
| 5 | 4 | rexbidv 3158 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉)) |
| 6 | 5 | rspcv 3570 | . . 3 ⊢ (𝑉 ∈ 𝑈 → (∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉)) |
| 7 | 6 | 3ad2ant3 1135 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → (∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉)) |
| 8 | 3, 7 | mpd 15 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∃wrex 3058 ⊆ wss 3899 × cxp 5619 ‘cfv 6489 fBascfbas 21289 UnifOncust 24125 CauFiluccfilu 24210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 df-ust 24126 df-cfilu 24211 |
| This theorem is referenced by: fmucnd 24216 cfilucfil 24484 |
| Copyright terms: Public domain | W3C validator |