MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfiluexsm Structured version   Visualization version   GIF version

Theorem cfiluexsm 24214
Description: For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
cfiluexsm ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
Distinct variable groups:   𝐹,𝑎   𝑉,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝑋(𝑎)

Proof of Theorem cfiluexsm
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iscfilu 24212 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
21simplbda 499 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
323adant3 1132 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)
4 sseq2 3958 . . . . 5 (𝑣 = 𝑉 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑎 × 𝑎) ⊆ 𝑉))
54rexbidv 3158 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
65rspcv 3570 . . 3 (𝑉𝑈 → (∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
763ad2ant3 1135 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → (∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉))
83, 7mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈) ∧ 𝑉𝑈) → ∃𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  wss 3899   × cxp 5619  cfv 6489  fBascfbas 21289  UnifOncust 24125  CauFiluccfilu 24210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fv 6497  df-ust 24126  df-cfilu 24211
This theorem is referenced by:  fmucnd  24216  cfilucfil  24484
  Copyright terms: Public domain W3C validator