![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfiluexsm | Structured version Visualization version GIF version |
Description: For a Cauchy filter base and any entourage π, there is an element of the filter small in π. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
Ref | Expression |
---|---|
cfiluexsm | β’ ((π β (UnifOnβπ) β§ πΉ β (CauFiluβπ) β§ π β π) β βπ β πΉ (π Γ π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscfilu 23784 | . . . 4 β’ (π β (UnifOnβπ) β (πΉ β (CauFiluβπ) β (πΉ β (fBasβπ) β§ βπ£ β π βπ β πΉ (π Γ π) β π£))) | |
2 | 1 | simplbda 500 | . . 3 β’ ((π β (UnifOnβπ) β§ πΉ β (CauFiluβπ)) β βπ£ β π βπ β πΉ (π Γ π) β π£) |
3 | 2 | 3adant3 1132 | . 2 β’ ((π β (UnifOnβπ) β§ πΉ β (CauFiluβπ) β§ π β π) β βπ£ β π βπ β πΉ (π Γ π) β π£) |
4 | sseq2 4007 | . . . . 5 β’ (π£ = π β ((π Γ π) β π£ β (π Γ π) β π)) | |
5 | 4 | rexbidv 3178 | . . . 4 β’ (π£ = π β (βπ β πΉ (π Γ π) β π£ β βπ β πΉ (π Γ π) β π)) |
6 | 5 | rspcv 3608 | . . 3 β’ (π β π β (βπ£ β π βπ β πΉ (π Γ π) β π£ β βπ β πΉ (π Γ π) β π)) |
7 | 6 | 3ad2ant3 1135 | . 2 β’ ((π β (UnifOnβπ) β§ πΉ β (CauFiluβπ) β§ π β π) β (βπ£ β π βπ β πΉ (π Γ π) β π£ β βπ β πΉ (π Γ π) β π)) |
8 | 3, 7 | mpd 15 | 1 β’ ((π β (UnifOnβπ) β§ πΉ β (CauFiluβπ) β§ π β π) β βπ β πΉ (π Γ π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 β wss 3947 Γ cxp 5673 βcfv 6540 fBascfbas 20924 UnifOncust 23695 CauFiluccfilu 23782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-ust 23696 df-cfilu 23783 |
This theorem is referenced by: fmucnd 23788 cfilucfil 24059 |
Copyright terms: Public domain | W3C validator |