|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cfiluexsm | Structured version Visualization version GIF version | ||
| Description: For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.) | 
| Ref | Expression | 
|---|---|
| cfiluexsm | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iscfilu 24298 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) | |
| 2 | 1 | simplbda 499 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) | 
| 3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣) | 
| 4 | sseq2 4009 | . . . . 5 ⊢ (𝑣 = 𝑉 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑎 × 𝑎) ⊆ 𝑉)) | |
| 5 | 4 | rexbidv 3178 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣 ↔ ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉)) | 
| 6 | 5 | rspcv 3617 | . . 3 ⊢ (𝑉 ∈ 𝑈 → (∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉)) | 
| 7 | 6 | 3ad2ant3 1135 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → (∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣 → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉)) | 
| 8 | 3, 7 | mpd 15 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 × cxp 5682 ‘cfv 6560 fBascfbas 21353 UnifOncust 24209 CauFiluccfilu 24296 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fv 6568 df-ust 24210 df-cfilu 24297 | 
| This theorem is referenced by: fmucnd 24302 cfilucfil 24573 | 
| Copyright terms: Public domain | W3C validator |