Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilufbas Structured version   Visualization version   GIF version

Theorem cfilufbas 22501
 Description: A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
cfilufbas ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → 𝐹 ∈ (fBas‘𝑋))

Proof of Theorem cfilufbas
Dummy variables 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscfilu 22500 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎𝐹 (𝑎 × 𝑎) ⊆ 𝑣)))
21simprbda 494 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → 𝐹 ∈ (fBas‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∈ wcel 2106  ∀wral 3089  ∃wrex 3090   ⊆ wss 3791   × cxp 5353  ‘cfv 6135  fBascfbas 20130  UnifOncust 22411  CauFiluccfilu 22498 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-iota 6099  df-fun 6137  df-fn 6138  df-fv 6143  df-ust 22412  df-cfilu 22499 This theorem is referenced by:  fmucnd  22504  cfilufg  22505  cfilucfil  22772
 Copyright terms: Public domain W3C validator