| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfilufbas | Structured version Visualization version GIF version | ||
| Description: A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| Ref | Expression |
|---|---|
| cfilufbas | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → 𝐹 ∈ (fBas‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscfilu 24261 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑣))) | |
| 2 | 1 | simprbda 498 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → 𝐹 ∈ (fBas‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3933 × cxp 5665 ‘cfv 6542 fBascfbas 21319 UnifOncust 24173 CauFiluccfilu 24259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6495 df-fun 6544 df-fv 6550 df-ust 24174 df-cfilu 24260 |
| This theorem is referenced by: fmucnd 24265 cfilufg 24266 cfilucfil 24535 |
| Copyright terms: Public domain | W3C validator |