MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilufg Structured version   Visualization version   GIF version

Theorem cfilufg 24207
Description: The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
cfilufg ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))

Proof of Theorem cfilufg
Dummy variables 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilufbas 24203 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → 𝐹 ∈ (fBas‘𝑋))
2 fgcl 23793 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
3 filfbas 23763 . . 3 ((𝑋filGen𝐹) ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ∈ (fBas‘𝑋))
41, 2, 33syl 18 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (fBas‘𝑋))
51ad3antrrr 730 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ∈ (fBas‘𝑋))
6 ssfg 23787 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
75, 6syl 17 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ⊆ (𝑋filGen𝐹))
8 simplr 768 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏𝐹)
97, 8sseldd 3930 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏 ∈ (𝑋filGen𝐹))
10 id 22 . . . . . . . 8 (𝑎 = 𝑏𝑎 = 𝑏)
1110sqxpeqd 5646 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 × 𝑎) = (𝑏 × 𝑏))
1211sseq1d 3961 . . . . . 6 (𝑎 = 𝑏 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑏 × 𝑏) ⊆ 𝑣))
1312rspcev 3572 . . . . 5 ((𝑏 ∈ (𝑋filGen𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
149, 13sylancom 588 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
15 iscfilu 24202 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)))
1615simplbda 499 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)
1716r19.21bi 3224 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) → ∃𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)
1814, 17r19.29a 3140 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
1918ralrimiva 3124 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
20 iscfilu 24202 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((𝑋filGen𝐹) ∈ (CauFilu𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)))
2120adantr 480 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ((𝑋filGen𝐹) ∈ (CauFilu𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)))
224, 19, 21mpbir2and 713 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3897   × cxp 5612  cfv 6481  (class class class)co 7346  fBascfbas 21279  filGencfg 21280  Filcfil 23760  UnifOncust 24115  CauFiluccfilu 24200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21288  df-fg 21289  df-fil 23761  df-ust 24116  df-cfilu 24201
This theorem is referenced by:  ucnextcn  24218
  Copyright terms: Public domain W3C validator