Step | Hyp | Ref
| Expression |
1 | | cfilufbas 23451 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → 𝐹 ∈ (fBas‘𝑋)) |
2 | | fgcl 23039 |
. . 3
⊢ (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋)) |
3 | | filfbas 23009 |
. . 3
⊢ ((𝑋filGen𝐹) ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ∈ (fBas‘𝑋)) |
4 | 1, 2, 3 | 3syl 18 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → (𝑋filGen𝐹) ∈ (fBas‘𝑋)) |
5 | 1 | ad3antrrr 727 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐹 ∈
(CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ∈ (fBas‘𝑋)) |
6 | | ssfg 23033 |
. . . . . . 7
⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹)) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐹 ∈
(CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ⊆ (𝑋filGen𝐹)) |
8 | | simplr 766 |
. . . . . 6
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐹 ∈
(CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏 ∈ 𝐹) |
9 | 7, 8 | sseldd 3921 |
. . . . 5
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐹 ∈
(CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏 ∈ (𝑋filGen𝐹)) |
10 | | id 22 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → 𝑎 = 𝑏) |
11 | 10 | sqxpeqd 5616 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑎 × 𝑎) = (𝑏 × 𝑏)) |
12 | 11 | sseq1d 3951 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑏 × 𝑏) ⊆ 𝑣)) |
13 | 12 | rspcev 3559 |
. . . . 5
⊢ ((𝑏 ∈ (𝑋filGen𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣) |
14 | 9, 13 | sylancom 588 |
. . . 4
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝐹 ∈
(CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣) |
15 | | iscfilu 23450 |
. . . . . 6
⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu‘𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑏 ∈ 𝐹 (𝑏 × 𝑏) ⊆ 𝑣))) |
16 | 15 | simplbda 500 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → ∀𝑣 ∈ 𝑈 ∃𝑏 ∈ 𝐹 (𝑏 × 𝑏) ⊆ 𝑣) |
17 | 16 | r19.21bi 3133 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) → ∃𝑏 ∈ 𝐹 (𝑏 × 𝑏) ⊆ 𝑣) |
18 | 14, 17 | r19.29a 3216 |
. . 3
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) ∧ 𝑣 ∈ 𝑈) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣) |
19 | 18 | ralrimiva 3108 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣) |
20 | | iscfilu 23450 |
. . 3
⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((𝑋filGen𝐹) ∈ (CauFilu‘𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣))) |
21 | 20 | adantr 481 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → ((𝑋filGen𝐹) ∈ (CauFilu‘𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣 ∈ 𝑈 ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣))) |
22 | 4, 19, 21 | mpbir2and 710 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu‘𝑈)) |