MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilufg Structured version   Visualization version   GIF version

Theorem cfilufg 24213
Description: The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.)
Assertion
Ref Expression
cfilufg ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))

Proof of Theorem cfilufg
Dummy variables 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilufbas 24209 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → 𝐹 ∈ (fBas‘𝑋))
2 fgcl 23798 . . 3 (𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
3 filfbas 23768 . . 3 ((𝑋filGen𝐹) ∈ (Fil‘𝑋) → (𝑋filGen𝐹) ∈ (fBas‘𝑋))
41, 2, 33syl 18 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (fBas‘𝑋))
51ad3antrrr 730 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ∈ (fBas‘𝑋))
6 ssfg 23792 . . . . . . 7 (𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
75, 6syl 17 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝐹 ⊆ (𝑋filGen𝐹))
8 simplr 768 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏𝐹)
97, 8sseldd 3944 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → 𝑏 ∈ (𝑋filGen𝐹))
10 id 22 . . . . . . . 8 (𝑎 = 𝑏𝑎 = 𝑏)
1110sqxpeqd 5663 . . . . . . 7 (𝑎 = 𝑏 → (𝑎 × 𝑎) = (𝑏 × 𝑏))
1211sseq1d 3975 . . . . . 6 (𝑎 = 𝑏 → ((𝑎 × 𝑎) ⊆ 𝑣 ↔ (𝑏 × 𝑏) ⊆ 𝑣))
1312rspcev 3585 . . . . 5 ((𝑏 ∈ (𝑋filGen𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
149, 13sylancom 588 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) ∧ 𝑏𝐹) ∧ (𝑏 × 𝑏) ⊆ 𝑣) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
15 iscfilu 24208 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐹 ∈ (CauFilu𝑈) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)))
1615simplbda 499 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)
1716r19.21bi 3227 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) → ∃𝑏𝐹 (𝑏 × 𝑏) ⊆ 𝑣)
1814, 17r19.29a 3141 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) ∧ 𝑣𝑈) → ∃𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
1918ralrimiva 3125 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)
20 iscfilu 24208 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → ((𝑋filGen𝐹) ∈ (CauFilu𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)))
2120adantr 480 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → ((𝑋filGen𝐹) ∈ (CauFilu𝑈) ↔ ((𝑋filGen𝐹) ∈ (fBas‘𝑋) ∧ ∀𝑣𝑈𝑎 ∈ (𝑋filGen𝐹)(𝑎 × 𝑎) ⊆ 𝑣)))
224, 19, 21mpbir2and 713 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3911   × cxp 5629  cfv 6499  (class class class)co 7369  fBascfbas 21284  filGencfg 21285  Filcfil 23765  UnifOncust 24120  CauFiluccfilu 24206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-fbas 21293  df-fg 21294  df-fil 23766  df-ust 24121  df-cfilu 24207
This theorem is referenced by:  ucnextcn  24224
  Copyright terms: Public domain W3C validator