Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrn0 Structured version   Visualization version   GIF version

Theorem clnbgrn0 47824
Description: The closed neighborhood of a vertex is never empty. (Contributed by AV, 16-May-2025.)
Hypothesis
Ref Expression
clnbgrn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrn0 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) ≠ ∅)

Proof of Theorem clnbgrn0
StepHypRef Expression
1 clnbgrn0.v . . 3 𝑉 = (Vtx‘𝐺)
21clnbgrvtxel 47821 . 2 (𝑁𝑉𝑁 ∈ (𝐺 ClNeighbVtx 𝑁))
3 ne0i 4340 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑁) → (𝐺 ClNeighbVtx 𝑁) ≠ ∅)
42, 3syl 17 1 (𝑁𝑉 → (𝐺 ClNeighbVtx 𝑁) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wne 2939  c0 4332  cfv 6560  (class class class)co 7432  Vtxcvtx 29014   ClNeighbVtx cclnbgr 47810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-clnbgr 47811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator