Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrssvtx Structured version   Visualization version   GIF version

Theorem clnbgrssvtx 47812
Description: The closed neighborhood of a vertex 𝐾 in a graph is a subset of all vertices of the graph. (Contributed by AV, 9-May-2025.)
Hypothesis
Ref Expression
clnbgrvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrssvtx (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉

Proof of Theorem clnbgrssvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 clnbgrvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21clnbgrisvtx 47811 . 2 (𝑛 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑛𝑉)
32ssriv 3967 1 (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3931  cfv 6536  (class class class)co 7410  Vtxcvtx 28980   ClNeighbVtx cclnbgr 47799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-clnbgr 47800
This theorem is referenced by:  clnbgrlevtx  47825  clnbgrisubgrgrim  47912  clnbgrgrim  47914  isubgr3stgrlem6  47950  isubgr3stgrlem7  47951  isubgr3stgrlem8  47952  isubgr3stgr  47954  uhgrimgrlim  47966  grlicref  47984  grlicsym  47985  clnbgr3stgrgrlic  47991
  Copyright terms: Public domain W3C validator