Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrssvtx Structured version   Visualization version   GIF version

Theorem clnbgrssvtx 47862
Description: The closed neighborhood of a vertex 𝐾 in a graph is a subset of all vertices of the graph. (Contributed by AV, 9-May-2025.)
Hypothesis
Ref Expression
clnbgrvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrssvtx (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉

Proof of Theorem clnbgrssvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 clnbgrvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21clnbgrisvtx 47861 . 2 (𝑛 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑛𝑉)
32ssriv 3933 1 (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3897  cfv 6476  (class class class)co 7341  Vtxcvtx 28969   ClNeighbVtx cclnbgr 47849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-clnbgr 47850
This theorem is referenced by:  clnbgrlevtx  47876  clnbgrisubgrgrim  47963  clnbgrgrim  47965  isubgr3stgrlem6  48002  isubgr3stgrlem7  48003  isubgr3stgrlem8  48004  isubgr3stgr  48006  uhgrimgrlim  48018  grlicref  48043  grlicsym  48044  clnbgr3stgrgrlim  48050  clnbgr3stgrgrlic  48051
  Copyright terms: Public domain W3C validator