Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrssvtx Structured version   Visualization version   GIF version

Theorem clnbgrssvtx 47805
Description: The closed neighborhood of a vertex 𝐾 in a graph is a subset of all vertices of the graph. (Contributed by AV, 9-May-2025.)
Hypothesis
Ref Expression
clnbgrvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrssvtx (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉

Proof of Theorem clnbgrssvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 clnbgrvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
21clnbgrisvtx 47804 . 2 (𝑛 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑛𝑉)
32ssriv 3947 1 (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3911  cfv 6499  (class class class)co 7369  Vtxcvtx 28899   ClNeighbVtx cclnbgr 47792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-clnbgr 47793
This theorem is referenced by:  clnbgrlevtx  47818  clnbgrisubgrgrim  47905  clnbgrgrim  47907  isubgr3stgrlem6  47943  isubgr3stgrlem7  47944  isubgr3stgrlem8  47945  isubgr3stgr  47947  uhgrimgrlim  47959  grlicref  47977  grlicsym  47978  clnbgr3stgrgrlic  47984
  Copyright terms: Public domain W3C validator