| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrvtxel | Structured version Visualization version GIF version | ||
| Description: Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clnbgrvtxel | ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ 𝑉) | |
| 2 | eqidd 2731 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 𝐾 = 𝐾) | |
| 3 | 2 | orcd 873 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒)) |
| 4 | clnbgrvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | eqid 2730 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 6 | 4, 5 | clnbgrel 47833 | . 2 ⊢ (𝐾 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝐾 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒))) |
| 7 | 1, 1, 3, 6 | syl21anbrc 1345 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 {cpr 4594 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 Edgcedg 28981 ClNeighbVtx cclnbgr 47823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-clnbgr 47824 |
| This theorem is referenced by: clnbgrn0 47837 clnbgrgrim 47938 isubgr3stgrlem7 47975 grlimgrtri 47999 |
| Copyright terms: Public domain | W3C validator |