| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrvtxel | Structured version Visualization version GIF version | ||
| Description: Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clnbgrvtxel | ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ 𝑉) | |
| 2 | eqidd 2738 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 𝐾 = 𝐾) | |
| 3 | 2 | orcd 874 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒)) |
| 4 | clnbgrvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | eqid 2737 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 6 | 4, 5 | clnbgrel 47815 | . 2 ⊢ (𝐾 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝐾 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒))) |
| 7 | 1, 1, 3, 6 | syl21anbrc 1345 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3951 {cpr 4628 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 Edgcedg 29064 ClNeighbVtx cclnbgr 47805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-clnbgr 47806 |
| This theorem is referenced by: clnbgrn0 47819 clnbgrgrim 47902 isubgr3stgrlem7 47939 grlimgrtri 47963 |
| Copyright terms: Public domain | W3C validator |