Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrvtxel Structured version   Visualization version   GIF version

Theorem clnbgrvtxel 47702
Description: Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.)
Hypothesis
Ref Expression
clnbgrvtxel.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clnbgrvtxel (𝐾𝑉𝐾 ∈ (𝐺 ClNeighbVtx 𝐾))

Proof of Theorem clnbgrvtxel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐾𝑉𝐾𝑉)
2 eqidd 2741 . . 3 (𝐾𝑉𝐾 = 𝐾)
32orcd 872 . 2 (𝐾𝑉 → (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒))
4 clnbgrvtxel.v . . 3 𝑉 = (Vtx‘𝐺)
5 eqid 2740 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
64, 5clnbgrel 47701 . 2 (𝐾 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝐾𝑉𝐾𝑉) ∧ (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒)))
71, 1, 3, 6syl21anbrc 1344 1 (𝐾𝑉𝐾 ∈ (𝐺 ClNeighbVtx 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108  wrex 3076  wss 3976  {cpr 4650  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082   ClNeighbVtx cclnbgr 47692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-clnbgr 47693
This theorem is referenced by:  clnbgrn0  47705  clnbgrgrim  47786  grlimgrtri  47820
  Copyright terms: Public domain W3C validator