| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrvtxel | Structured version Visualization version GIF version | ||
| Description: Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.) |
| Ref | Expression |
|---|---|
| clnbgrvtxel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| clnbgrvtxel | ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ 𝑉) | |
| 2 | eqidd 2732 | . . 3 ⊢ (𝐾 ∈ 𝑉 → 𝐾 = 𝐾) | |
| 3 | 2 | orcd 873 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒)) |
| 4 | clnbgrvtxel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | eqid 2731 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 6 | 4, 5 | clnbgrel 47859 | . 2 ⊢ (𝐾 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ ((𝐾 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉) ∧ (𝐾 = 𝐾 ∨ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝐾} ⊆ 𝑒))) |
| 7 | 1, 1, 3, 6 | syl21anbrc 1345 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 {cpr 4573 ‘cfv 6476 (class class class)co 7341 Vtxcvtx 28969 Edgcedg 29020 ClNeighbVtx cclnbgr 47849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-clnbgr 47850 |
| This theorem is referenced by: clnbgrn0 47863 clnbgrgrim 47965 isubgr3stgrlem7 48003 grlimprclnbgr 48027 grlimprclnbgrvtx 48030 grlimgredgex 48031 grlimgrtri 48034 |
| Copyright terms: Public domain | W3C validator |