Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneik4 | Structured version Visualization version GIF version |
Description: Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneik4 | ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . 3 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneik4w 41599 | . 2 ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)))) |
5 | 3 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
6 | simplr 765 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑥 ∈ 𝐵) | |
7 | 1, 2, 3 | ntrneiiex 41575 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
8 | elmapi 8595 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
10 | 9 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
11 | 10 | adantlr 711 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
12 | 1, 2, 5, 6, 11 | ntrneiel 41580 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼‘𝑠)) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥))) |
13 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
14 | 1, 2, 5, 6, 13 | ntrneiel2 41585 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼‘𝑠)) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦)))) |
15 | 12, 14 | bitr3d 280 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦)))) |
16 | 15 | bibi2d 342 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)) ↔ (𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
17 | 16 | ralbidva 3119 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
18 | 17 | ralbidva 3119 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
19 | 4, 18 | bitrd 278 | 1 ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |