Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik4 Structured version   Visualization version   GIF version

Theorem ntrneik4 40799
Description: Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik4 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦)))))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥,𝑦   𝑘,𝐼,𝑙,𝑚,𝑥,𝑦   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥   𝑢,𝐵,𝑠,𝑥,𝑦   𝑢,𝑁,𝑦   𝜑,𝑢,𝑦
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑦,𝑢,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑢,𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑦,𝑢,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik4
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . 3 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneik4w 40798 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥))))
53ad2antrr 725 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁)
6 simplr 768 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑥𝐵)
71, 2, 3ntrneiiex 40774 . . . . . . . . . 10 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
8 elmapi 8411 . . . . . . . . . 10 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
97, 8syl 17 . . . . . . . . 9 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
109ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
1110adantlr 714 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
121, 2, 5, 6, 11ntrneiel 40779 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ (𝐼𝑠) ∈ (𝑁𝑥)))
13 simpr 488 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
141, 2, 5, 6, 13ntrneiel2 40784 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼𝑠)) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦))))
1512, 14bitr3d 284 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦))))
1615bibi2d 346 . . . 4 (((𝜑𝑥𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ (𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦)))))
1716ralbidva 3161 . . 3 ((𝜑𝑥𝐵) → (∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦)))))
1817ralbidva 3161 . 2 (𝜑 → (∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ (𝐼𝑠) ∈ (𝑁𝑥)) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦)))))
194, 18bitrd 282 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼𝑠)) = (𝐼𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) ↔ ∃𝑢 ∈ (𝑁𝑥)∀𝑦𝐵 (𝑦𝑢𝑠 ∈ (𝑁𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator