| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneik4 | Structured version Visualization version GIF version | ||
| Description: Idempotence of the interior function is equivalent to stating a set, 𝑠, is a neighborhood of a point, 𝑥 is equivalent to there existing a special neighborhood, 𝑢, of 𝑥 such that a point is an element of the special neighborhood if and only if 𝑠 is also a neighborhood of the point. (Contributed by RP, 11-Jul-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneik4 | ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 3 | ntrnei.r | . . 3 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 4 | 1, 2, 3 | ntrneik4w 44082 | . 2 ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)))) |
| 5 | 3 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐹𝑁) |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑥 ∈ 𝐵) | |
| 7 | 1, 2, 3 | ntrneiiex 44058 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 8 | elmapi 8799 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
| 9 | 7, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
| 10 | 9 | ffvelcdmda 7038 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
| 11 | 10 | adantlr 715 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐼‘𝑠) ∈ 𝒫 𝐵) |
| 12 | 1, 2, 5, 6, 11 | ntrneiel 44063 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼‘𝑠)) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥))) |
| 13 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
| 14 | 1, 2, 5, 6, 13 | ntrneiel2 44068 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝐼‘(𝐼‘𝑠)) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦)))) |
| 15 | 12, 14 | bitr3d 281 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝐼‘𝑠) ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦)))) |
| 16 | 15 | bibi2d 342 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑠 ∈ 𝒫 𝐵) → ((𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)) ↔ (𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
| 17 | 16 | ralbidva 3154 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)) ↔ ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
| 18 | 17 | ralbidva 3154 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ (𝐼‘𝑠) ∈ (𝑁‘𝑥)) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
| 19 | 4, 18 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼‘(𝐼‘𝑠)) = (𝐼‘𝑠) ↔ ∀𝑥 ∈ 𝐵 ∀𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁‘𝑥) ↔ ∃𝑢 ∈ (𝑁‘𝑥)∀𝑦 ∈ 𝐵 (𝑦 ∈ 𝑢 ↔ 𝑠 ∈ (𝑁‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 𝒫 cpw 4559 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |