Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneicnv Structured version   Visualization version   GIF version

Theorem clsneicnv 44094
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneicnv (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐾(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneicnv
StepHypRef Expression
1 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
21cnveqi 5838 . . 3 𝐻 = (𝐹𝐷)
3 cnvco 5849 . . 3 (𝐹𝐷) = (𝐷𝐹)
42, 3eqtri 2752 . 2 𝐻 = (𝐷𝐹)
5 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
6 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
75, 1, 6clsneibex 44091 . . 3 (𝜑𝐵 ∈ V)
8 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
9 simpr 484 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
108, 5, 9dssmapnvod 44009 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷 = 𝐷)
11 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
12 pwexg 5333 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
1312adantl 481 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
14 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
15 eqid 2729 . . . . 5 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
1611, 13, 9, 14, 15fsovcnvd 44003 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 = (𝐵𝑂𝒫 𝐵))
1710, 16coeq12d 5828 . . 3 ((𝜑𝐵 ∈ V) → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
187, 17mpdan 687 . 2 (𝜑 → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
194, 18eqtrid 2776 1 (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  ccnv 5637  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator