Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneicnv Structured version   Visualization version   GIF version

Theorem clsneicnv 43432
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneicnv (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐾(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneicnv
StepHypRef Expression
1 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
21cnveqi 5868 . . 3 𝐻 = (𝐹𝐷)
3 cnvco 5879 . . 3 (𝐹𝐷) = (𝐷𝐹)
42, 3eqtri 2754 . 2 𝐻 = (𝐷𝐹)
5 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
6 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
75, 1, 6clsneibex 43429 . . 3 (𝜑𝐵 ∈ V)
8 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
9 simpr 484 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
108, 5, 9dssmapnvod 43347 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷 = 𝐷)
11 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
12 pwexg 5369 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
1312adantl 481 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
14 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
15 eqid 2726 . . . . 5 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
1611, 13, 9, 14, 15fsovcnvd 43341 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 = (𝐵𝑂𝒫 𝐵))
1710, 16coeq12d 5858 . . 3 ((𝜑𝐵 ∈ V) → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
187, 17mpdan 684 . 2 (𝜑 → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
194, 18eqtrid 2778 1 (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  cdif 3940  𝒫 cpw 4597   class class class wbr 5141  cmpt 5224  ccnv 5668  ccom 5673  cfv 6537  (class class class)co 7405  cmpo 7407  m cmap 8822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-map 8824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator