Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneicnv Structured version   Visualization version   GIF version

Theorem clsneicnv 44067
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneicnv (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐾(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneicnv
StepHypRef Expression
1 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
21cnveqi 5899 . . 3 𝐻 = (𝐹𝐷)
3 cnvco 5910 . . 3 (𝐹𝐷) = (𝐷𝐹)
42, 3eqtri 2768 . 2 𝐻 = (𝐷𝐹)
5 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
6 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
75, 1, 6clsneibex 44064 . . 3 (𝜑𝐵 ∈ V)
8 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
9 simpr 484 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
108, 5, 9dssmapnvod 43982 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷 = 𝐷)
11 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
12 pwexg 5396 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
1312adantl 481 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
14 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
15 eqid 2740 . . . . 5 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
1611, 13, 9, 14, 15fsovcnvd 43976 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 = (𝐵𝑂𝒫 𝐵))
1710, 16coeq12d 5889 . . 3 ((𝜑𝐵 ∈ V) → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
187, 17mpdan 686 . 2 (𝜑 → (𝐷𝐹) = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
194, 18eqtrid 2792 1 (𝜑𝐻 = (𝐷 ∘ (𝐵𝑂𝒫 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  ccnv 5699  ccom 5704  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator