Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneikex | Structured version Visualization version GIF version |
Description: If closure and neighborhoods functions are related, the closure function exists. (Contributed by RP, 27-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneikex | ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.p | . 2 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
2 | clsnei.d | . 2 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | clsnei.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
4 | clsnei.r | . . . . 5 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
5 | 2, 3, 4 | clsneibex 41178 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
6 | clsnei.o | . . . . . . 7 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
7 | pwexg 5247 | . . . . . . . 8 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
8 | 7 | adantl 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
9 | simpr 488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
10 | clsnei.f | . . . . . . 7 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
11 | 6, 8, 9, 10 | fsovf1od 41090 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
12 | f1ofn 6603 | . . . . . 6 ⊢ (𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | 1, 2, 9 | dssmapf1od 41095 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
15 | f1of 6602 | . . . . . 6 ⊢ (𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)⟶(𝒫 𝐵 ↑m 𝒫 𝐵)) |
17 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾𝐻𝑁) |
18 | 3 | breqi 5038 | . . . . . 6 ⊢ (𝐾𝐻𝑁 ↔ 𝐾(𝐹 ∘ 𝐷)𝑁) |
19 | 17, 18 | sylib 221 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐾(𝐹 ∘ 𝐷)𝑁) |
20 | 13, 16, 19 | brcoffn 41106 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
21 | 5, 20 | mpdan 686 | . . 3 ⊢ (𝜑 → (𝐾𝐷(𝐷‘𝐾) ∧ (𝐷‘𝐾)𝐹𝑁)) |
22 | 21 | simpld 498 | . 2 ⊢ (𝜑 → 𝐾𝐷(𝐷‘𝐾)) |
23 | 1, 2, 22 | ntrclsiex 41129 | 1 ⊢ (𝜑 → 𝐾 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 Vcvv 3409 ∖ cdif 3855 𝒫 cpw 4494 class class class wbr 5032 ↦ cmpt 5112 ∘ ccom 5528 Fn wfn 6330 ⟶wf 6331 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 ↑m cmap 8416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-map 8418 |
This theorem is referenced by: clsneifv4 41187 |
Copyright terms: Public domain | W3C validator |